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1.1 What is Physics?

Physics is the branch of science deals with the structure of
matter and the interactions between the fundamental constituents of
the observable universe.

Physics can, at base, be defined as the science of matter, motion,
and energy. These subjects may be divided into, classical physics
and modern physics. Classical physics is concerned largely with
macroscopic bodies, (can be seen with the eye). Modern physics,
on the other hand, is concerned with the submicroscopic world,
that is, with those phenomena in which the structure and the
behavior of individual atoms and molecules are of prime

importance.

1.2 Physical Measurements'

Physical quantities are often divided into:

a. Fundamental basic physical quantities,

Quantities that can not be expressed from other physical
quantities such as length (1), mass (m), time (t), Temperature (T)

and electric charge (q).

b. Derived physical quantities

Quantities that can be expressed from other physical quantities

such as velocity (v), acceleration (a), density (p) and volume (V).
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1.3 Systems of Units
Three different systems of units are most commonly used in
science and engineering. They are:

1. The meter-kilogram-second or mks system.

2. The Gaussian system, in which the fundamental
mechanical units are the centimeter, the gram, and the
second (a cgs system).

3. The British engineering system (a foot- pound- second or
fps system).

The metric system is used universally in scientific work and
provides the common units of commerce in most countries of

the world.

TABLE 1.4 Multiples and submultiples of metric quantities

51 Prefixes
Multiple Prefix Symbol
10" peta P
10%? tera T
102 giga G
10 mega M
10° kilo k
10° hecto h
10 deka da
10" deci d
102 centl c
10~ milli m
10° micro 1L
107 nano n
107 pico p
107" femto f
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mks System cgs system

(International (S1)) (Gaussian system)

Kilogram Gram 1kg=10%g
Second second

N
Force Dyne 1N=10°dyne
(Newton=Kg.m/s?)
Pa 1Pa=10dyne/cm
Pressure Dyne/cm?
(pascal=N/m?) 2
J
Ener Er 1J=10"er
W
Power Erg/s 1W=10"erg/s
(Watt=J/s)

Conversion Metric System for Weight

1m=10%cm

centimeter

x 10 x10 x10 x10 x10 x 10

el

) Bigger Units Smaller Units

L.
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el Ml Complete the following:

6.2x102 J/g=........ erg/kg

Solution
6.2 x 102 J/g = 6.2 x 102 x 107/10° erg/kg
= 6.2 x 108 erg/kg
4.3 x10%dyne =4.3x 103x 10° N
=4.3x10°N
7TA=7x10"m
=7x101%%x 103 mm =7 x 10" mm
57kW=5.7x103W
=5.7x103%J/s
= 5.7 x 103x 107 /1/(60x60) erg/h
=5.7 x 103x 107 x 60 x 60 erg/h
= 20.52 x10*3 erg/h

=Ell W Determine the Sl units of the kinetic energy

Solution

The kinetic energy = 1/2 mv?
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1.4 Dimensions

We need some suitable mathematical notation to calculate
with dimensions like length, mass, time, and so forth. The
dimension of length is written as [L], the dimension of mass as
[M], the dimension of time as [T], and the dimension of
temperature as [0]. The dimension of a derived unit like velocity,
which is distance (length) divided by time, then becomes [LT ]
in this notation. The dimension of force, another derived unit, is
the same as the dimension of mass times acceleration, and hence
the dimension of force is [MLT?]. Some common physical

quantities and their dimensions are listed in the following table.

The physical quantity SI Unit Dimension

1- Area m’ [L]

2- Volume m’ [L]
3-The velocity m/s [L][ T]"
4-The acceleration m/s” [L][ T]*
5-The force (N)=kgm/s* | [M][L][T]*
6-The frequency % [T]"
7-The density kg/m’ [M][L]”
8-The volume m’ L]
0-The pressure N/m™=kg /ms” | [M][L]'[T]”
10-The work J=kgm’ /s’ [M][LT[T]”
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Check consistency of dimensional equation of speed.
Speed = Distance/Time
Solution
[LTY =L/T
[LTY =[LTY
The equation is dimensionally correct, as the dimension of speed

IS same on both sides.

Check the consistency of the equation

X = Xo + Vot + (1/2) at?
where x and Xo are distances, t is time, v is velocity and a is an
acceleration of the body.

Solution

Now to check if the above equation is dimensionally correct, we
have to prove that dimensions of physical quantities are same on
both sides. Also, we have to keep in mind that quantities can only
be added or subtracted if their dimensions are same.
x = distance = [L]
Xo= distance = [L]
Vot = velocity x time = [LT?] x [T] = [L]
at? = acceleration x time? = [LT?] x [T?] = [L]
Since dimensions of left hand side equals to dimension on right
hand side, equation is said to be consistent and dimensionally

correct.
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Check whether the given equation is dimensionally
correct.
W = 1/2 mv? — mgh
Where W stands for work done, m means mass, g stands for
gravity, v for velocity and h for height.
Solution
To check the above equation as dimensionally correct, we first
write dimensions of all the physical quantities mentioned in the
equation.
W = Work done = Force x Displacement
=[MLT?] x [L] = [ML?T"]
Kinetic Energy= 1/2 mv? = [M] x [L2T?] = [ML?T?]
Potential Energy= mgh = [M] x [LT?] x [L] = [ML?T?]
Since all the dimensions on left and right sides are equal it is a

dimensionally correct equation.

Suppose a bob is hanging from a ceiling and time
period of oscillations depends on ,,length “I”” of the thread, mass
“m” of the bob and gravity “g”. Find a relation between time and
other physical quantities
Solution
Let's time depends on powers X, y and z of length |, mass m and
gravity g of the bob. Then the equation becomes:
T=kI*mYg?

where K is a proportionality constant
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Writing dimensions on both sides, we get
[MOLOT] =k [L]* [MP [LT?)?
Arranging powers accordingly, we get
[MOLOT] = k [MY L2 T-%7]

Equating powers on both sides, we get three equations

y=0
X+z=0
2z=1

Solving the linear equations, we get
x=1/2,y=0and z=-1/2
Substituting the values of x, y and z in the equation we have

derived the following relation: T = k 1¥2m0g-1/2

/l
T=K |—
m

=Clll Suppose we are told that the acceleration a of a
particle moving with uniform speed v in a circle of radius r is
proportional to some power of r, say r", and some power of v, say
v™. How can we determine the values of n and m?
Solution
Let: a=krmym
Dim[LHS]= Dim[RHS] — || = [L"]z]™
[L][T]% = [L]""™[T]™ — n+m=1, m=2 — n=-1

VZ

a=kr‘1V2 — CZZKT

9
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Chapter 2

Elastic Properties of Solids

10
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2.1 Elasticity

The subject of elasticity deals with the behavior of those
substances, which have the property of recovering sal=iu their size
and shape when the forces producing deformation JS&ll juad/s i3l
are removed this can be found as in rubber rings. We find this
elastic property to some extent in all solid bodies. The opposite of
elasticity is plasticity.

Plasticity is the property that the substance cannot restore
its original shape and size after deformation this can be found as
in pinpoint u« s,

Define the Elasticity and Plasticity with examples?

2.2 Stress and Strain

We shall discuss the deformation of solids in terms of the
concepts of stress A=Y and strain Jw=asy),
Stress is the external force acting on an object per unit cross-
sectional area.
Strain is simply the measure of how much an object is stretched
or deformed. Strain occurs when force is applied to an object.
Strain deals mostly with the change in length of the object.
The result of a stress is strain, which is a measure of the degree of
deformation.
The moduli 4354l ©3las are used to describe the elastic behavior

of the objects.

11
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The relation between stress and strain can be written as:
Stress = modulus X strain (2.1)

This relation can be varied according to Elastic or Plastic

materials.
Ry failure
elastic i «
/
N Yield Stress
V|
0 ;
v i
D a .
& plastic
c

Strain

In Elastic materials, the relation between stress and strain is linear
and satisfy the relation in Equation (2.1). While in Plastic

materials, relation is represented as nonlinear curves.

define each of Stress and Strain.
Describe the Stress-Strain relation in elastic and plastic

materials.

12
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2.2.1 Hooke’s law
Robert Hooke (1676) discovered a simple relation between
stress and strain which is known as Hooke’s law. He described
the effect of tensile forces 24 s 58 on the material. He observed
that the increase in length of a stretched body xi«ll awall such as
spring sk is proportional to & —li the applied force 3

el
unstretched
spring
[ —

Hooke's Law
Fspr/'ng= kx

Spring constant k

stretched
spring

Sl

[ —

“«x-

Hooke’s law:
"The force (F) needed to extend 33l or compress L= a spring

by some distance (x) scales linearly proportional to that distance."
F x<x

F = kx

13
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Where
F: is the applied force,
X: the elongation (displacement 4= Y)
k: The spring constant skl <uls

Hooke's law for a spring is sometimes, stated under the
convention that F is the restoring force (33=iu¥) s $8) exerted by
the spring on whatever is pulling its free end which will be in the
reverse direction o\x3¥l uSe, In that case, the equation becomes

F =—kx
Therefore, k = g (N/m) is a measure of the stiffness 4:>= of the

spring. It is different for different springs and materials. The
larger the spring constant, the stiffer the spring and the more
difficult it is to stretch.

State Hook's low and investigate the Hook's equation.
define the spring constant.

2.2.2 The Stress- Strain Relation Graph relation

The relation between Stress- Strain can be expressed as :

E =

stress

strain
The constant, E, (the proportionality factor between stress and

strain) is called the modulus of elasticity or elastic modulus.

14
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The E values depend on the type of the material. The SI unit of
the constant E is that of stress over strain, i.e. N/m?, as the strain
IS a ratio and has no units. The Stress-Strain relation graph can be

shown in Fig.2.1.

Elastic limit
(yield point)

b d

Plastic Fracture point
deformation P

Proportional limit

a

Stress

«— Elastic behavior

v

0 Strain

Fig.2.1 The Stress-Strain graph

e The stress and strain are linearly proportional until point a

Is reached. The point a is called the proportional limit 2~

—1ll of the material. Hook's law is obeyed until this point.

eFFrom a to b, stress and strain are not linearly proportional.

e |If the load is removed at any point between from o to b, the
material will restore x=iu its original state.

e In the region ob, the material is said to be Elastic or exhibit
Elastic behavior and, the point b is called the Elastic limit,
or the yield point g saall ddass,

15
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e Increase of the load beyond b produces a large increase in
the strain (even if the stress decreases) until a point d is
reached at which fracture _-sS takes place.

e From b to d, the material is said Plastic deformation. It

can't restore its original dimensions after removing the
stress.
From the graph, we can define the following terms:
The Elastic limit: It is the maximum stress the material can afford
Jaaii before deformation.
The Ultimate Strength: It is the greatest stress the material can
afford before rupture (%
Ductile Materials 4l 3 sall: If large plastic deformation takes
place between the elastic limit (b) and the fracture point (d), or
the materials that has elastic behavior.
Brittle Material 43¢l 3 sal): | fracture occurs soon after the elastic
limit (b) is passed.
Safety Factor:

e For all engineering materials, it is not allowed to apply
stress on any material beyond its elastic limit.
e The stress must be smaller, even within the elastic region to

be in the linear proportional limits.

Describe and explain the stress-strain graph.
Define the elastic limit, the ultimate strength, ductile

materials and brittle materials.

16
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What are the safety factors that taken into consideration

in dealing with the engineering materials.

2.3 Elastic Modulus (E)

The ratio of stress to strain is called an elastic modulus of
the material. Corresponding to the three types of strains (tensile
24l shear u=dll, and volume strain), there are three elastic
modulus:

e Young's modulus of elasticity; Y: It corresponds to tensile
strain.

e Shear modulus (or modulus of rigidity); S: It corresponds to
shearing strain.

e Bulk modulus (or volume modulus); B: It corresponds to
volumetric strain,

2.3.1 Young’s Modulus : Elasticity in Length
Consider a rod is clamped <« at one end and a load is applied at
the other. Let L represent the wire’s original length, A its cross-
sectional area, and AL the elongation produced by the applied
force F. See Fig. 2.2

By definition, stress is the force per unit area, and strain is
the elongation per unit length.
let's describe the following terms:

The Tensile Stress (6) skl gy

It is the normal force (A) 42 s2l) s 581l per unit cross sectional area

(A). It is a scalar quantity.

17
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=
Tensile Stress (0) = "5 (Pa=N/m?) (2.2)
I T T
L
I
F
Fig.2.2

The Tensile Strain (g) skl Juid)
Itis the ratio between the elongation (AL) and the original length
=¥ J skl of the material

AL
Tensile Strain () = L (2.3)

Thus the modulus of elasticity is called Young’s modulus, is the
ratio between tensile stress and tensile strain. Which written as Y,
and is given by:
o
Y =—
E
__F/A
~ AL/L

18
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Or

FL
Y = AL (Pa=N/m?) (2.4)

The above relation means that if the proportional limit is not
exceeded, the ratio of the stress to strain is constant.
Define the following terms: Tensile Stress, Tensile
Strain and Young modulus.
What is the physical meaning of Ysteel > Y Aluminium -

An 80 Kg mass is hung 4il=« on a steel wire having 18 m long and
3mm diameter. What is the stress on the wire, the resulting stain

and elongation of the wire, knowing Y oung’s modulus for steel is
21x 100 N/m?.
Solution
L =18m, m = 80Ky, r=15x10"3m,
Y =21 x101°N/m?
F=mg=80xX9.8=784N

F 784
og=—

A= msx 107y - XN

o
£=—==>528x%x10"3
Y

_AL AL a0
£=T T18 T

AL = 0.0095m = 9.5mm

19



Dr. Elshaimaa Amin Chapter 2

2.3.2 Shear modulus: Elasticity of shape
When an object is subjected to a force parallel ) s« to one
of its faces while the opposite face is held fixed by another force,

the stress in this case is called a shear stress, see Fig. (2.3).

Fig.2.3

The shear stress is defined as the ratio of the tangential force F
to the area A of the face being sheared.

The shear strain is defined as the ratio of the horizontal distance
X that the sheared face moves, to the height of the object h
(assuming that, for small distortions, no change in volume occurs

with this deformation). Thus the shear modulus is:

S = Shear stress/Shear strain

Shear stress =

Shear strain =

SR ™

20
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7

S:%,or

_Fh
_Ax

S (2.5)

The shear modulus (or modulus of rigidity 4>u=), S has a
significance for solid materials only. The SI units of shear
modulus are that of stress, i.e. N/m?2.

When a material is subjected to shear stress the volume will not
change.

Define the following terms: Shear Stress, Shear Strain
and Shear modulus.

Why it is easier to punch <& a hole in a sheet = o of

aluminum than a sheet of steel for the same sheet thickness.

A cube of gelatin is 6 cm in length when unstressed & secae e, A
force of 0.245 N is applied tangentially “-\ to the upper surface,
causing a 0.48 cm displacement relative to the lower surface.
Find :-

a) The shear stress,

b) The shear strain, and

¢) The shear modulus
Solution
Length = 0.06m,F = 0.245N,x = 0.48 X 10™?m

21
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A= Length? = (0.06)?= 0.0036m?
F 0.245

a) Shear stress = — = = 68.1 N/m?
A 0.0036
0.48x1072
b) Shear strain = z= = 0.8
h 0.06

c)  Shear modulus = % = 85.125N /m?

2.3.3 Bulk Modulus: Volume Elasticity
Bulk modulus is defined as the negative ratio of volume
stress to the volume strain.
When a force is applied normally to the surface of a body and a
change in volume takes place, the strain is known as volume strain.
Figure 2.5 shows that when a cube of solid is undergoes a
change in volume but no change in shape, the cube is compressed

Ly on all sides by forces normal to its six faces.
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Volume Stress is measured as the ratio between the applied force

F and the area A of the face. It can be called the pressure (P)
Volume stress = F/A = AP

Volume strain is measured by the change in volume per unit

volume, that is :
Volume strain = AV/ V

Where Av is the change in volume produced by the force F in the

original volume V.

By definition the bulk modulus of elasticity is given by :

B = - volume stress /volume strain

F/A _ AP

AV/V T AVY (2.6)

The minus sign is included in the definition of B because an

increase in applied pressure causes a decrease in volume (negative

AV) and vice versa. The Sl units of B are the same as those of

pressure, i.e. N/m? (or Pascal).

Important

- Solids and liquids have a bulk modulus.

- Liquids do not exhibit Young’s modulus or shear modulus
because a liquid does not sustain a shearing stress or a tensile
stress. If a shearing force or a tensile force is applied to a liquid,

the liquid simply flows in response.

23
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Compressibility (K)
The reciprocal ~Se of the bulk modulus is called the
Compressibility.

1 AV
Ke—==—— 2.7)
B PV

Which can defined as the fractional decrease in volume (— AVV)

per unit increase in pressure (P).
The unit of compressibility is Pa™ .

Table 2.1 shows the compressibility of liquids.

Table 2.1
e Compressibility K
(Pat)

Mercury 3.7 X 1011
Glycerin 21 X 10
Water 45.8 X 1011
Carbon disulfide 93 X 101!
Ethyl alcohol 110 X 10+

Define the following terms: Bulk Stress, Bulk Strain
and Bulk modulus.
What is the physical meaning of Kuater < Kethyi alconol.

24
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2.3.4 The relation between Elastic Moduli

The relation between the elastic moduli can be written as

9BS
Y = (2.8)
3B+S

Table 2.2 shows the elastic moduli for some materials

Table 2.2
Young Shear Bulk
Material Modulus (Y) Modulus (S) Modulus (B)

(x10%9) (x10%9) (x109)

A solid brass sphere is initially surrounded 4k\ss by air and the
air pressure exerted on it is 1x10° N/m?. The sphere is submerged
L & a3 in into the ocean to a depth where the pressure is 2x 107
N/m?. The volume of the sphere in air is 0.50 m3. By how much

does this volume change once the sphere is submerged?

25
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Bulk modulus for brass = 6.1x101° N/m?
Solution
AP =2 %107 —1x 105 = 1.99 x 107N /m?

V =0.5m3
p=_20 i 100N /m?
a7 =6
%
(0.5)(1.99 x 107)
AV = — — —1.6 x 10~*m3
v 6.1 x 1010 6> 107 m

The negative sign indicates that the volume of the sphere

decreases

2.4 Energy Stored in a Stretched Wire (Elastic
Potential Energy)

When a wire is stretched within the limits of elastic
deformation, it resists the extension with internal force, which
tends to bring it back to its original length.

As a result of this restoring force, the wire possesses a potential
energy (known as elastic potential energy AU) whose magnitude
Is equal to the work (W) done in stretching the wire against the
restoring force as in Fig. 2.6.

Fr =-kX (2.9)
The work done in stretching the wire by an infinitismal amount

dx is therefore given by :

26
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W=jF.dx

= j —kx.dx

Fr4§......€9_> F
Lo
H AX
Fig. 2.6
X
= —k J x. dx
0
1
W = —=kx?
2
Therefore
AU = -W
Drive an expression for the energy stored in a stretched
spring.

27
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2.5 Poisson’s ratio, p

If a body is subjected to some force or a system of forces,
then the deformation in the body is not in one direction only but
throughout the body.

If a wire is stretched its length increases but its diameter

decreases. This can be shown in Fig.2.7 .

L dr
L+dL

Fig.2.7 Scratched Rod

For a wire Poisson’s ratio p is defined as the negative ratio of
lateral strain = =1l L) to longitudinal strain skl s,

u = - lateral strain / longitudinal strain
AR/R
AL/L

Where: R is the original radius of the wire , AR is the decrease in

M:

Radius, L is the original length of the wire and AL is the increase
in length .

The minus sign induced in the definition of u because an increase
in L always causes a decrease in R whereas, a decrease in L

always causes an increase in R .

28
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Poisson’s ratio, p of the cylindrical wire is equal (1/2)
+V(R,L) = nR*L = Const
dV(R,L) =VdR +VdL =0
dV(R,L) = 2mRLdR + nR?*dL = 0
2LdR + RdL =0

LdR 1

1
RdL 2

= —l > U =
##2

dR
R
dL
L

Define the Poisson’s ratio using mathematical relations.
Prove that the Poisson’s ratio of the cylindrical wire is
equal (1/2).

A copper o<~ wire has 10m long with 2 mm radius is used to
carry a mass of 12 kg. How much does the wire stretch under this
load? What is the minimum radius of the wire to not exceed the
elasticity limit? let Y=1.2x10" N/cm?, the elastic limit of

copper=1.5 x10%3dyne/m>.
Solution
r=0.002m,L = 10m,m = 12Kg,

1.2 X 107N /cm?
Y =
10—*
Elastic limit = 1.5 x 1013 x 107> = 1.5 x 108N /m?

= 1.2 x 1011 N /m?

29
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A =mr? =3.14 x (0.002)? = 12.56 X 10~m?
F=mg=12x98=1176N

F
v 1 AL FL 117.6 x 10
= - = =
AL AY ~ 1256 X 1076 x 1.2 x 1011
L

AL =78 X 10™>m = 0.78mm

+ Elastic limit =
min

F 1176
elastic limit 1.5 x 108

Apin = T = 78.4 X 1078m?

78.4 x 10~8 4
Tmin = 314 =5X107* = 0.5mm

Amin -

= 78.4 X 1078m?

30



Chapter 2 Elastic Properties of Solids

Solved Examples

EIENEY A 80 Kg mass is hung on a steel wire having 18m
long and 3mm diameter. What is the elongation of the wire,

knowing Young's modulus for steel is 21 x 10 N/m??

Solution

m=80 kg L=18 m
D=2r=3 mm= 0.003m r=0.0015m Y=21 x 10%° N/m?

. L __F/A
Young's modulus is given by =—> Y = AL
FL
So, the elongationis —— AL = —
AY

il e LV 20 %095m =19 \5mm

== X
7(0.0015)°  21x10"°

31
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=EUX¥| A cube of gelatin is 6 cm in length when unstressed.
A force of 0.245 N is applied tangentially to the upper surface,
causing 0.48 cm displacement relative to the lower surface.

Find: 1) Shear stress 2) shear strain 3) shear modulus

Solution

1) Shear stress = F/A = 0.245/ (0.06x0.06) = 68.1 N/m?

2) Shear strain = x/h = 0.0048/0.06 = 0.8

3) Shear modulus= Shear stress / Shear strain

= (68.1 N/m?)/0.8=85.125 N/m?

A solid brass sphere is initially surrounded by air
and the air pressure exerted on it is 1x10° N/m?. The sphere is
submerged in into the ocean to a depth where the pressure is 2x
107 N/m?. The volume of the sphere in air is 0.50 m3. By how
much does this volume change once the sphere is submerged?
Bulk modulus for brass = 6.1x10%° N/m?

Solution _,
?

B=— 2P . av=_YelP
AV)V, B

~ (0.5) (2X107 -1X10°%)
6.1X10"°

The negative sign indicates that the volume of the sphere

LAV = =-1.6 X10" m®

decreases.

32
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A steel sphere was carried to a planet on which
atmospheric pressure is much higher than on the earth, the
higher pressure causes the radius of sphere to decrease. To
describe the relationship between stress and strain for the
sphere, you would use:
a) Young’s modulus.
b) Shear modulus.
c) Bulk modulus.
d) None of these.
Solution
(c)Bulk modulus

A block of iron is sliding across a horizontal floor,
the friction force between the block and the floor causes the
block to deform. To describe the relationship between stress
and strain for the block, you would use:

a) Young’s modulus.

b) Shear modulus.

c¢) Bulk modulus.

d) None of these

Solution

(b) Shear modulus

33
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Chapter 3

Fluid Mechanics

34



Chapter 3 Fluid Mechanics

3.1 Fluid Static J

3.1.1 Fluids
A fluid is a substance that can flow. Hence the term fluid
includes liquids and gases. Generally, a fluid is a collection of
molecules that are randomly arranged and held together by weak
cohesive forces and by forces exerted by walls of a container.

Fluid static is the study of fluids at rest.

3.1.2 Pressure

When fluids are at rest, there are no shear forces. The only
stress that can be exerted on an object submerged L s in a static
fluid is one that tends to compress - the object from all sides,
this what we called pressure (P). and it is always perpendicular

25« 10 the surfaces of the object. See Fig. 3.1

Fluid Statics—1*> ‘ /

Fig. 3.1

35
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Pressure is defined as the magnitude of the normal force

433 5a2l) 5 58l On a surface area A. It can be calculated as:

P=F/A Pascal (3.1)
The Pressure P is a scalar quantity.

3.1.3 Variation of Pressure with depth

Water pressure increases with depth. Atmospheric pressure
decreases with increasing altitudes <lelas )Y,
Now we show how the pressure in a liquid increases with depth.
Consider a cylinder of a liquid of density p at rest as shown in
Fig.3.2 with cross-sectional area A extending from depth d to
depth d + h.

Fig. 3.2

Several forces that affect the cylindrical liquid, they can be

summarized as:
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1. The downward force exerted by the outside fluid on the
top of the cylinder has a magnitude:
Fi=P/A |
2. The upward force exerted on the bottom of the cylinder
has a magnitude:
Fo=PA 1T
3. The weight of the liquid in the cylinder and it acts
downward:
Fo=m g=pVQg=pAhg |
Where
m: the mass of the cylinder, g: the gravity acceleration, V: the
cylinder volume.
Because the cylinder is in equilibrium, the net force acting
on it must be zero. see that:
Fi+F+F =0
F,=F, +F
P,A = P;A + pAhg
P, = P, + phg (3.2)
If the liquid is open to the atmosphere and Py is the pressure at the
surface of the liquid , then Pg is atmospheric pressure, we usually
take atmospheric pressure to be Py = 1.00 atm = 1.013 x 10° Pa.
then P2 called the absolute pressure, it depends on the fluid
density p and the depth in the fluid h.
P = Py + phg
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Determine the dependence of the pressure on the depth

in a static fluid?

What is the pressure due to water at a depth of 7.5
Km below sea level ? the water density pw = 1.025 x 103 Kg / m®
Solution
P=Po+ pwgh
P=1.025x10%x9.8 x 7.5 x 103
P=7.53x10"N/m?=75.3 MPa

=EUlel 4 The dam is 500 m wide, and the water is 80.0 m deep
at the dam. (a) What is the average pressure on the dam due to the

water? (b) Calculate the force exerted against the dam
£

Solution

The average pressure P due to the weight of the water is the
pressure at the average depth h of 40.0 m, since pressure increases

linearly with depth.
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P = pgh
P =10%3x%x9.8%x40 =3.92 x 10°> N/m?

F=PA=3.92x10°x (80 x 500) =1.57 x 101N

What is the pressure at a point 2000m high above sea
level assuming that the density of air is approximately constant
and pair=1.22 Kg/ m3?
Solution
P=P- pairgh
=1.013 x 10° - 1.22 x 9.8 x 2000
= 7.74 x10* N/ m?

3.1.4 Pascal’s Principle JSub law

Pascal’s principle is given as follows: "Pressure applied to
confined incompressible fluid blea™ JE e Gugae e s
transmitted undiminished o= e Jii to every portion of the
fluid and the walls of the containing vessel L¥\" .

An important application of Pascal’s law is the hydraulic
press illustrated in Fig.3.3. A force of magnitude F; is applied to
a small piston of surface area Ai. The pressure is transmitted
through an incompressible liquid to a larger piston of surface area
As.
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original force
F1=P1A1

area A1

Fo=P2 A2

area A2 L

fluid

P1=A—1

Pascal’s principle Po=—=

Fig.3.3
P1 - Pz
F, F,
A Ay

Therefore, the force F2 is greater than the force F1 by the

factor Az /A1. By designing a hydraulic, a large output force can

be applied by means of a small input force.

e The efficiency <\l of the press

Fyx,

7= Fix4

Where x; and x; are the input and output pistons displacements

respectively.

e The mechanical advantages 4% 523l of the press

E—Fl
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State Pascal’s principle, and what is it use?
Describe with the aid of mathematical expressions the
hydraulic press.

Small piston of a hydraulic press has a diameter of
8cm, and the larger piston has a diameter of 160cm. determine the
minimum force to lift 1500kg load. Let the efficiency 80%. By
how much is the load lifted, assume the small piston moves 1m.
Solution
r, = 4cm, r, = 80cm, m; = 1500kg
A, = mr? = 3.14 X 16 = 50.24 cm?
A, = rf = 3.14 X 6400 = 20.096 x 103 cm?
F, =m,g = 14700 N

Fi F
Ay A,
A, 50.24

F = X 14700 = 36.75N

= —F = :
A, %7 20.096 x 10
With efficiency n=80%

Fyx;
- Fixq
Fixq 36.75 x 1
Xy =1 F, =0.8><14—700=2mm
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3.1.5 Archimedes’ Principle usisadi ) 13
Archimedes’ principle states "the upward buoyant force
ikl 3 8 that is exerted on a body immersed L s in a fluid is equal
to the weight of the fluid that the body displaces 7! Il Jiball ¢ 5,
Verification of Archimedes principle
Consider a cylinder body of height (h=h»-hy), area A and

density ps immersed in a liquid as shown in Fig.3.4.

I -

Fig.3.4

If the pressure at the top of the cylinder is P1 with force Fy,
then the pressure at the bottom of the cylinder is P, with force F..
Three forces affect the cylinder as F1, F2 and the cylinder weight
Fy. As Archimedes principle, the buoyant force Fg (upward) is the

resultant force of the forces F; and F», this can be written as:
FB == FZ — Fl
FB == PzA — PlA
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Fg = A(P; — Py)
Py =pighi, P, =pigh;
Fgp = p1gA(h; — hy) = pgA(h)
Fg = p1gVim = W,
pi- the liquid density, Vim: the volume of the immersed cylinder,

W,: the weight of the displaced liquid by the cylinder.
State and prove Archimedes' principle?

The net forces that acts on the immersed body can be calculating
from the body weight (Fq) and the buoyant force F.
FT == F:g - FB
Fy=psgV,  Fp=pgVv

Fr=F (1 Fs

Pi
Fr=FE(1-2)
r—e Ps

Investigate the net force that acts on the immersed body

in a static liquid.

A rectangle tub _=s~ made of a thin shell 38, sl
of poured cement «suadl Cien¥) has length 1=120cm, width
w=110cm, depth y=90cm, and mass M=188 kg. The tub floats in
a lake. How many people of mass m=100kg can stand in the tub

before it sinks &%, (p,, = 1000kg/m?3)
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Solution
The tub volume Viup = 1.2 x 1.1 X 0.9 = 1.188m3
The total mass Miptqr = M + Nm = 188 + 100N
Where N: number of persons.

sasall b o 3all Jiladl 05 = Al anall 0
Miotar = Pw9Veun
188 + 100N = 1188
N =10

3.1.6 Surface Tension Akl s gl

Surface Tension: "It is the phenomena 3_2W of liquid surfaces
Jil sl =laul to act as stretched membrane 2sxis cLi& under
tension”.

To understand that phenomena assume a rectangular frame
ABCD as in Fig.3.5. The frame side CD is movable while other
sides are fixed. The frame is immersed in a soap solution Jslss
Osba, The free side CD will slide into the rectangle under the

effect of the surface tension force.

—p| 4 ]x
B c| B C :[C'
1 f !
/ / -
l/ B l/ ,’7 '
A (a) kot A P D
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It can be calculated experimentally as:
F x 21l =2yl

F

V=ﬂ

where

2l: is the effective length of the membrane.

v: 1s the surface tension coefficient, it defined as the force per unit
length (N/m).

So, the work done (W) is defined as the work done per unit

increase in the surface area (J/m?), it can be written as:

W = FAx
W = 2ylAx = yAA
W
Y= a4

Describe and explain the surface tension phenomena

and give an expression for the surface tension coefficient.

3.1.7 Capillarity sl dualil

It is the phenomena that liquids can ascend a& 5 or descend s
in the capillary tubes 4 =&l ¥, This depends on the cohesive
forces <l s 58 and adhesive forces =23l s 8. Water ascends

in the glass tubes to a height h, as shown in Fig.3.6
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Fs= F cos@

Water

Fig.3.6

Let Fq is the weight of the water column, Fs is the vertical surface
tension force, r is the inner radius of the tube and @ is the angle of
contact.
Fy =mg = pVg
F, = p(nr?h)g
v Fs; = FcosO = y(2mr)cos0O
For balancing system,
Foe = Eg
y(2nr)cosd = p(nr2h)g
b= 2ycos6
pgr
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Describe and explain the capillarity and give an
expression for the height of the water in capillarity tube in terms

of the tube radius.

EICH The capillaries are typically 0.2mm radius. It
immersed in water, if the contact angle is 45°. Find the maximum

height to which water can rise in the tube according to the surface

Bame S, =1000kg/m3)

tension alone. (y =

Solution
2ycosf
h=2¥
pgr
. 2%x73%x1073 % 0.707
"~ 1000%x9.8%x2x 1075

= 0.527m

47



Dr. Elshaimaa Amin Chapter 3

3.2 Fluid Dynamics J

3.2.1 General concepts of fluids flow

Fluid dynamics is the study of fluids in motion .Fluid flow
can be steady < (laminar ~%~) or non-steady. When the fluid
velocity v at any given point is constant in time, the fluid motion
is said to be steady. In non-steady < .eflow, the velocity v is
function of the time.

= Fluid flow can be rotational (' s> or irrotational (<! s2 . If

the element of fluid at each point has no net angular velocity
A8l )5 4oy 4l Lul about that point, the fluid flow is
irrotational.

= Fluid flow can be compressible L= Q& or

incompressible bluxsi™ J8 e Liquids can usually be

considered as flowing incompressible. But even a highly
compressible gas may sometimes undergo unimportant
changes in density. Its flow is then practically
incompressible.

= Finally fluid flow can be viscous z ¥ or nonviscous z ¥ & .

Velocity in fluid motion &l sl & 4= i is the analog of
friction in the motion of solids 2 sall 48 )a & Aiayl s

4lall, Viscosity introduces tangential forces 4sules (s 8
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between layers of fluid &Ll <lak in relative motion and
results in dissipation of mechanical energy.

We shall confine our discussion of fluid dynamics for the Ideal
fluid flow Jilgell Alall 383l therefore the following four

concepts are considered :

1. The fluid is steady. In steady (laminar) flow, the velocity
of the fluid at each point remains constant.

2. The fluid is non viscous. In this case, internal friction is
neglected. An object moving through the fluid experiences
no viscous force.

3. The fluid is incompressible. The density of an
incompressible fluid is constant.

4. The flow is irrotational. In irrotational flow, the fluid has

no angular momentum about any point.

What are the features of the ideal fluid flow.

Streamlines ¢zt

The path taken by a fluid particle under a steady flow is
called a streamline. The velocity of the particle is always tangent
wsles 10 the streamline, as in Fig.3.7. Consider the point P within
the fluid, since v at P does not change in time, every particle
arriving at P will pass on with the same speed in the same

direction.
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The same is true about the point Q and R. The curve in Fig.3.7 is

called streamline.

Fig 3.7

In steady flow il (3831l streamlines cannot intersect ¥
either of two paths and the flow would not be steady). Therefore,
in steady flow, streamlines illustrate a fixed pattern of the flow
Sl (e i sas In principle we can draw a streamline through
every point in the fluid.

Let us assume steady flow and select a finite number of
streamlines to form a bundle, this tubular =55 region is called a

stream tube or a tube of flow. Thus, a stream tube is a region in a

fluid bounded by streamlines, as seen in Fig.3.8. In steady flow,

a particle within stream tube cannot pass outside the tube
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3.2.2 The Continuity Equation

Fig.3.8

In Fig.3.8, the velocity of the fluid inside the tube of flow
may have different magnitudes at different points (although it
parallel to the tube at any point 45530 (5 ) s a3l 3ax3l1) | et the
speed be v: for fluid particles at P and v» for fluid particles at Q.
Let A:r and A, be the cross-sectional areas of the tube
perpendicular to the streamlines at the points P and Q respectively.
In the time interval At a fluid element travels approximately the
distance vAr .

Then the mass of fluid Amz crossing Az in the time interval
AL QS Aie )5 58 A Had Al adlall AL

Amy = p1 A1 V1AL
The mass of fluid Am; crossing A; in the same time interval At

is: Amy = po Ax Vo At
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Where p1 and p, are the fluid densities at P and Q , respectively .
Because the fluid is incompressible , p1 = p2 = p and because the
flow is steady ,then, Ami=Amy
Then
A1 vi = Az v2 = constant (3.3)
Or
Av = constant

This expression is called the equation of continuity for fluids. It
states that:

"The product of the area and the speed at all points along a

pipe is constant for an incompressible fluid™'

The equation (3.3) shows that the speed is high where the
tube is constricted o=l (small A ) and low where the tube is wide
(large A) . The product Av gives the volume flux or flow rate Ja=«
o=l and it has the dimensions of volume per unit time
The condition Av = const. is equivalent to the statement that the
volume of fluid that enters one end of a tube in a given time
interval equals the volume leaving the other end of the tube in the

same time interval if no leaks are present.

State the continuity fluid equation, showing that
volume of fluid that enters one end of a tube in a given time equals

to the volume of fluid that exit.
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3.2.3 Bernoulli’s Equation
When a fluid moves through a region where its speed and /or
elevation 4=\ )l above the Earth’s surface changes, the pressure
in the fluid varies with these changes.
U gl (58 as i) 5l / 5 ey lgd i Adhaie e Jile ety Ladie
Bernoulli’s equation is a general expression that relates the

pressure difference between two points in a flow tube to both

velocity changes 4e »dl &l s and elevation changes. <l jxs
&w)‘)“

Consider the flow of a segment of a nonviscous, steady,
incompressible flow of a fluid through a nonuniform pipeline

ki e sl or tube of flow shown in Fig.3.9.

Point 2

Fig.3.9
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At the beginning of the time interval At, the segment of fluid
AWl e ¢ Uad consists of the gray portion (portion 1) at the left and
the uncolored portion at the upper right. During the time interval
At, the left end of the segment moves to the right by a distance
AX1.

At the same time, the right end of the segment moves to the
right through a distance Ax», so that the volume element,

A1 AX1 = Az AX2

« At the end of the time interval, the segment of fluid consists of
the uncolored portion and the gray colored portion at the upper
right as shown in Fig.3.10
« At the end of the time interval, the segment of fluid consists of
the uncolored portion and the gray colored portion at the upper
right as shown in Fig.3.10

Fig.3.10
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The work Js_ !l J=&ll done on the system by the resultant force is
determined as follows:

O 1- The work done at point 1 to push the entering fluid ( input)
into the tube is the work done on the system by the pressure
force Fiis given by

Wi= P1 A1 AXa (3.4)

Q 2- The work done at point 2 to push forward the fluid out
the tube (output) is the work done by the system by the

pressure force F2 is given by
W, = - P2 Az AX2 (3.5)

Q 3- The work done on the system by gravity is associated
with lifting the gray portion of fluid from height y1 to height
yo 1S given by

Ws=-mg (Y2—V1) (3.6)

The work done on the system by the resultant force is found by

adding these three terms, thus
W =Py A1 AX1 — P> Ay AXo - mg (yz—yl)

=P1Vi1 -P2V2-mg (Y2—VY1)
where V1=V, =m/p ,then
W= (P1—P2)m/p -mg (y2-Yy1) (3.7)
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The work energy theorem for a particle states that:
"The work done on a particle by the resultant force is always

equal to the change in the Kinetic energy of the particle”.
Thatistosay W =AK
(P1—P2)mlp -mg (Y2 — VY1) =% mva? — Y% mvi?
(Pr—P2)-pg(y2—y1) =%p (v2* — v1?)

Pi+Y%pvil+pgyi=Pa+%pvi2+pgy. (38)
P+%pVv? +pgy = constant. (3.9)

Equation (3.9) is known as Bernoulli’s equation for steady,

nonviscous , incompressible fluid . This expression shows that:

e The pressure of a fluid decreases as the speed of the fluid
increases.e ud) <l ) Ll arall J4
e Pressure of a fluid decreases as the elevation increases. Ju
£ LY ) LS Lozl
This explains why water pressure bl ks from faucets stz on
the upper floor W=l &l sk of a tall building is weak —w=~= unless
measures are taken to provide higher pressure for these upper

floors .

Investigate ziiul the Bernoulli’s equation.
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Special cases:

1- The fluid is at rest, vi = v2 =0, Eg. 3.8 becomes
P-P2 =pg(y1 -y2 )=pgh
2- Horizontal tube , y1 =2,
P1+%pvi2=Py+ Y% pvy?
In Eq (3.9) ,The pressure p + p g h, which would be present even
if there were no flow ( v =0) is called the static pressure ; the

term 1/2 p v? is called the dynamic pressure .

A pipe has a diameter of 16 cm at point 1 (P1 = 200 KPa) and 10

cm at point 2 that is 6 m higher than portion 1. When oil of density
800 kg/ m3 flows in this pipe at a rate of 0.03 m3 /s . Find the
pressure at point 2 ?
Solution
Ai1vi=A2v2=0.03 ,then

v1=0.03/m (0.08)>=1.49m/s

v2 =0.03 /7 (0.05)? = 3.82 m/s
From Bernoulli’s Eq.

Pi+Yapvi®+pgyi=Pi+Y%pVv®+pgy:
Po=Pi+%p(Vi2—Vv22)+pg(y1—VY2)
=2 x 105 +% 800 { (1.49)2 — (3.82)2 } + 800 x9.8 x6
= 1.48 x105 pa .
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3.2.4 Application of Bernoulli’s Equation and the
Equation of Continuity.

Bernoulli’s equation can be used to determine fluid speeds
by means of pressure measurements alall ara (uld JOA (0 Sy
bl 4e e 2aa3 The principle generally used in such measuring
devices is the following: The Eq. of continuity requires that the
speed of the fluid at a constriction increases; Bernoulli’s equation
then shows that the pressure must fall there. That is for a
horizontal tube (or pipe) :

1/2p v + P = constant ;
If v increases and the fluid is incompressible, P must decreases.

The Venturi meter

This is a gauge 42 in a flow tube to measure the flow
speed (@il de i of a liquid.

Figure 3.11 is a horizontal pipe known as Venturi tube , it
can be used to determine the flow speed ( vz ) at point 2 if the

difference P1— P2 is known as follows :




Chapter 3 Fluid Mechanics

Applying equation (3.8) to points 1 and 2
Pi+ 12pvi+p gyi1= Pa+ 12pvi+p gy

Putting yi1 =y, because the pipe is horizontal ,gives

Pi+ 12pvi? = P+ 12pv2? (3.10)
From the equation of continuity ,
Awvi=A Vo
Then vi= Axval A

Substituting this expression into Eqg. (3.10) gives
Pi + 1/2p (A2 A1)?> V22 = P+ 1/2 p v

(P1 -P2)= 1/2 pva? (A1>- A?) [ A?
Then

Vo = A1 2(P1 -P2)/p (A A?) Y2
or Vo = Aaf 2gh/ (A2- A?) ]2
Similarly, we can obtain

Vi =A[2(P1 -P2)/p (A1 A2)]Y2
or vi = Az[ 2gh/ (A% A?) Y2

A Venturi meter reads height h; = 30 cm, and h, = 10
cm. Find the velocity of flow in the pipe. A;=7.85X 10 m? and
A;=1.26 x 103 m?.

Solution

vi = A 2(Py1 - PZ)/p (A12_ A22)]1/2

vi = Ax [ 2gh [ A% A2 142
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=1.26 x10°3 x10%[2x 20 x 102 x 9.8 / (7.85)? —(1.26)%]*2
=0.32m/s

3.2.5 Viscosity 4 s
In real fluids there exists internal friction (JAsl &\
between adjacent moving layers of the fluid A< il el
Jibudl's ) slaiall, Viscosity may be thought of as the internal friction
of a fluid. Because of viscosity, a force must be exerted to cause
one layer of a fluid to slide past another, or to cause one surface
to slide past another if there is a layer of fluid between the surfaces.
Both liquids and gases exhibit viscosity, although liquids are
much more viscous than gases.
Viscosity can be defined as the resistance to flow a liquid
Al 333148 aa, The flow process is one which involves molecules
bl Al 3 3Y 53 e aaiad b dl Alee sliding past each other under
the influence of some applied stress. The rate of flow will depend
upon: e iy Gl pud) Jaee
e the magnitude of the stress, ke el
e the shape of the molecules, and <l ) JS&

e the magnitude of the forces of intermolecular attraction

el Uy e G 2l

What are the factors that the flow rate depend on for

non-ideal fluids.
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3.2.6 Coefficient of Viscosity

Consider a layer AB of a liquid moving with a velocity v with
respect to a parallel layer CD that is at a distance r from it.
Consider that the force required to produce the motion F acting
on an area A and this force is acting along the direction AB, i.e.
along the direction of motion. An equal force will, therefore, act

on it in the backward direction due to viscosity .

A
» F

B S
_________________ .»____________
__________________ ‘;_________

r N S
______________________ .’._______

Fig.3.12

The backward force 4xS2ll 58 F will depend on the following
factors:

1. The relative velocity v, it is found that the magnitude of the

force F is directly proportional to v and acts in the direction

opposite to the direction of motion, i.e.

F o -y
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2. The area on which F acts. It is found that the magnitude of F
is directly proportional to A, i.e.
F cA

3. Thedistance r. It is found that the magnitude of F is inversely

proportional tor, i.e.

F oc 1/r
Then , it follows that
F oc VA/r
Or
F=-nAVvIr (3.11)

Where the constant of proportionality 1 is called the coefficient
of viscosity and it depends on the nature of the fluid.

The negative sign must be introduced because v decreases as r
increases. If the two layers AB and CD are very close to each

Other, the relation 3.11can be written as:
F=-nAdv/dr (3.12)

Where dv/dr is called the rate of change of velocity with distance .

From equation ( 3.11 ) the coefficient of viscosity n can be written

as
n =- FV/Ar

= - (FIA) / (vVIr)
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The quantity F/A is the shear stress exerted on the fluid and the

quantity v/r is the rate of change of shear strain , therefore,
N =- shear stress [ rate of change of shear strain

The SI unit of the of the coefficient of viscosity 1 is Nsm , this
unit is called Pascal second ( Pa .sec) or Poiseuilles (PI) . In cgs
system the unit of 1 is dyne second cm™ and it is the commonly
used unit , and is called poise , where :
1 poise = 1 dyne s cm™
= 10" Nsm™

Prove that the viscosity coefficient can be found as a

relation with the shear stress and shear strain.

3.2.7 Poiseuille’s Formula
Consider a viscous liquid that flow in a cylindrical tube of length
| and radius R such that :
= The flow of liquid is parallel to the axis of the tube.
= The flow is steady, i.e. no acceleration of the flow exist.
= The velocity of the liquid layer in contact with the walls is
zero and increases regularly and continuously towards the
inner side, it being maximum along the axis of the tube.
This flow of a viscous liquid is called the laminar, in which the
velocity is greatest at the center of the tube and decreases to zero
at the walls _las 4ual Ugad) LS J8 5 o i) Caatio A adlall de a2l 35
e jia Al Joall sl
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Stoke’s Formula for the Velocity of a small sphere falling

through a viscous liquid:

direction of
motion

Buoyant force

weight

viscous force

Fig. 3.13

When a steel ball is dropped into a viscous liquid in a tall jar

okb it begins to move down with acceleration under

gravitational pull. The motion of the ball in the liquid is opposed

by viscous forces. These viscous forces increase as the velocity

of the ball increases @ilall & 5 1 de ju 33l ) aw 4 3l (58 223,

Finally, a velocity will be attained when the apparent weight of

the ball becomes equal to the retarding viscous forces acting on it.
w\hﬂ‘djﬂgjmgﬂ\gﬁﬁu\u_)ﬁ\@ ,,LAJ-\-G‘LC‘)_HJ\ e

Ledle 5 555l
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For a small sphere falling through a viscous fluid, the opposing

force is depends on :

a. The terminal velocity V of the ball
b. The coefficient of viscosity M

c. The radius I of the sphere
Combining all these factors, we have
F oCvnr
Or F=Kvnr
Where K is dimensionless constant. Stoke found experimentally
that:
F=6mnvrn (3.13)
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Chapter 4

Gravitation
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Chapter 4 Gravitation

4.1 Introduction

Gravitation is the force of attraction <33l between any
two bodies. All the objects in the universe oS! like plants S| S,
moons _dl and all celestial bodies 4 staudl o) 2 ¥ attract «3a3i each
other with a certain amount of force.
In most of the cases, the force is too weak 4= to be observed

due to the very large distance of separation.

4.2 Newton's Low of Gravitation
According to Newton’s law of gravitation, “Every particle in the
universe attracts every other particle with a force whose
magnitude is:

- Directly proportional to the product of their masses i.e.

F o< (mimy)
- Inversely proportional to the square of the distance between
their centre i.e.
F o< 1/r?

where M; and M are the masses of the two objects, r is the

distance between them. This can be shown in Fig.4.1

mm
F=0G 11182

TZ
hence, G is the gravitational constant (G=6.67X10"1! Nm?/Kg?)

The gravitational force is only an attractive force.
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Fig.4.1

4.2 Kepler's Laws
4.2.1 The 1% law of kepler (The orbit Law)

The orbit L)« of a planet is an ellipse ¢ _sb<x with the Sun at one

of the two foci. sl sl

SIXE JOUIA]

Focus 1

. Major axis

Aphelion

/
Perihelion
Planet

An elliptical orbit of a planet

Fig.4.2

So, the planet will sometimes be far from the sun and sometimes

near from it.

4.2.1 The 2" law of kepler (The Areas Law)

A radius vector from any planet to the Sun sweeps out equal areas

45 gluda Glalus in equal lengths of time 4 sbuia 4 ) &l 5 J3A
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Fig.4.3

Therefore, the planet which is near from the sun must move faster

to pass the track in the same time as it passes far from the sun.

4.2.1 The 3" law of kepler (The Periods Law)
The square of a planet's orbital period olosdl ) @< s
proportional to the cube —=S« of the length of the semi-major

axis o'l ssa oOf its orbit.

2
T? = (%) r3

Where T is the periodic time, M is the mass of sun, r is the radius

In circular orbits:

of the circular orbit.

In elliptical orbits:

2
T? = (%) a’

Where a is the semi major axis of the elliptical orbit.
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Find the relation of the period time of the orbits.

From newton's law, hence m is the mass of the planet

The magnitude of the centripetal force

VZ
F=ma=m—->V =rw->F = mrw?
r

where w is the angular speed

Mm
2 _
mrw _G_Z
r
2 _ M
we = 3
T

Expressed using the orbital period T for one revolution of the

circle
21
w=—
Am? M
Tz =03

4r?
T2 — | 3
el Calculate the mass of the sun, assuming the earth's

orbit around the sun is circular with radius 2X10% m.

Solution

4mr? ;
M = _GTZ T
T = 365.25 X 24 X 60 X 60 = 31.5576 X 10°sec
M = 4755 x 1013kg
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Proof the third law of kepler, showing that the periodic
time depends on the orbit radius.

4.3 Properties of the elliptical orbits
The elliptical orbit is shown in Fig 4.4

Aphelion Perihelon

Perigee Apogee

Moon Orbit

Earth Orbit

Fig.4.4

Aphelion:

It is the point where the planet makes its farthest distance 2=
48lue from the sun.

Perihelion:

It is the point where the planet makes its closest approach «_3
055 W to the sun.

The eccentricity (e): S sl waduay!

the ratio of the distance between its to foci to the length of the
major axis. (il Ll sl o) sall G 2l G Al oo

As show in Fig.4.5.

Ymax-"Tmin . Tmax-"Tmin

Tmax+Tmin 2a
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minor axis
major b Semi-minor
axis axis

Y

Sun
Fa

Fmax

o o
. /
|

semi-major axis

planet’s
orbit

Fig.4.5

The eccentricity is dimension less with range 0<e<1.

To satisfy the newton's law

VAphrmax =

Vperrmin

Vaph: The speed of the planet at aphelion.

Vper: The speed of the planet at perihelion.

eIVl Consider the motion of a comet «ix« in an elliptical

orbit around star. The eccentricity of the orbit is given by e=0.2.

The distance between the aphelion and perihelion is 1.2X10

mm.

1)  Find the distance of the nearest and farthest approaches

of the comet.

i) If the speed of the comet is 80 km/s at perihelion, what

IS its speed at aphelion.

Solution
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Tmin = @ — ae = 4.8 x 101%m
Tmin = @ +ae = 7.2 x 101%m

VAphrmax = Vperrmin

Vapn = 53.33 x 10°m/s

4.4 The Acceleration of the gravity
I. At the surface of planet

For an object with mass m as shown in Fig.4.6.

m

Ii. At distance h
As shown in Fig.4.7
r=R+h

M

9=CRT e
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M
9=t 2 hy,
R(1+E)
GM 1
g = 2"
R (1+%)2

h
g=go-(L+2)7"
h: the altitude of the particle.
R: the radius of the planet.

EllER Determine the acceleration gravity on moon surface.
If the moon mass is 7.3554X10%2 kg, and its radius 1.739X106m.
(G=6.67X10"1 Nm?/Kg?)

Solution
Mysoon 7.3554 x 1022
=G = 6.67 x 10711 x
IMoon = =gz 1.739 x 106
= 1.622m/s?
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5.1 Oscillations <l

Any motion that repeats LS5 itself in equal intervals of

time 4 suia 43y &l 3 e s called periodic motion 4l 4s al)

or harmonic motion Aduliiall 4< al).

If a particle in periodic motion moves back and forth over
the same path 4Sa Gadi () 2l 4 53 A8 ja & jaty sl IS
S » JS A the motion is called oscillatory or vibratory
Apdlil) 4 al) e,
The period T gussd ¢3Y of a harmonic motion is the time
required to complete one oscillation or cycle 3,53 sl 203 Jaal
al<, The frequency 22,4 of the motion f is the number of
oscillations <L sae (or cycles) per unit time 458l 4, The
frequency is therefore the reciprocal « i« of the period, or
f=1T (5.1)
The position at which no net force acts 5_i s s 88 2> 55¥ on the
oscillating particle is called its equilibrium position &3 s«
OV,
The displacement 4=13Y) is the distance of the oscillating

particle from its equilibrium position at any instant.

Let us focus our attention on a particle oscillating back and forth

along a straight line between fixed limits. Its displacement x

changes periodically L in both magnitude and direction. Its

velocity v and acceleration a also vary periodically in magnitude

76



Chapter 5 Oscillatory Motion

and direction, and in view of the relation F = ma , so does the
force acting on the particle .

Figure 5.1a shows a particle oscillating between the limits x;
and Xz, O being the equilibrium position. Fig.5.1b shows the
corresponding potential energy curve 4w\Sll/a 5l 48 | which has

a minimum value at that position.

(2) (b)
| m X
X5 O v X
—>
a I
-t :
<+—| F=ma i
X
Fig .5.1

The force acting on the particle at any position is derivable @i
= from the potential energy function; it is given by :

F =-dU /dx (5.2)
The total mechanical energy E 4sSsilsuall 48l for an oscillating
particle is the sum of its kinetic energy 4s_all 43Us and potential
energy, or

E=K+U (5.3)
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In which E remains constant if nonconservative forces pslae s 58

=il such as the force of friction , are acting .

5.2 Simple Harmonic Motion
Let us consider an oscillating particle moving back and forth
about an equilibrium position through a potential that varies as

U (x) = 1/2 kx? (5.3)
In which k is a constant. The force acting on the particle is given
by:

F(x) = - dU/dx = - d(1/2kx?)/ dx
F (x) =-kx (5.4)

Such an oscillating particle is called a simple harmonic
oscillator (S.H.O) ks &)l Xl and the motion is called
simple harmonic motion (S.H.M) daynl) 43,458 S jall, Insuch a
motion, as Eq. (5.4) shows, the force acting on the particle is
proportional to the displacement but is opposite to it in direction.
In S.H.M. the limits of oscillation are equally spaced about the
equilibrium position.

Applying Newton’s law, F =mato the S.H.O, gives:

2
—kx=md—Z(
dt
d’x k 0
or dt?2 +EX_ (5.5)
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Let us now solve the Eq. of motion of the S.H.O ( Eq.5.5). We

can rewrite Eq. (5.5) as

' _ k.
The solution of Eq. (5.6) is
X=Acos(wt+d) (5.7)

and
dx/dt = - A sin ( ot +0)
d?x/dt? = -0?A cos ( ot +3)
Putting this into Eq. ( 5.6 ) one gets
- ®?A cos (ot +8) =-k/m A cos (t+8)
Therefore, If we choose the constant ® such that
®? = k/m (5.8)
Then x=A cos( ot + & ) is in fact a solution of the equation of a

simple harmonic oscillator.

The physical significance of the constant ®:
If the time t in Eq. (5.7) is increased by 2m/m, the function
becomes:
X =A cos[( o(t+2m/®w )+ d)
= A cos[( ot+2n+ 93 )
That is the function merely repeats itself after a time 2m/w.

Therefore 2m/w is the period of the motion T . Since ®? = k/m , We

have:
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m
T=2m/o=2m (5.9)

The frequency f of the oscillator is the number of complete

vibrations per unit time and given by

k
f=1/T=w2n=12n \/% (5.10)

and the angular frequency  is given by

Kk
w=2nf=2n/T= \E (5.11)

it has the dimension of reciprocal of time and its unit is the
radian/sec.

The quantity (ot + 8) is called the phase _sk of the motion. The
constant O is called the phase constant.

Thus, in a simple harmonic motion the relation between the
displacement , the velocity and the acceleration of the oscillating
particle is given by :
X = A cos (ot +J)
v =dx/dt = - ® A sin (ot +0)

a = d?x/ dt? = - »?A cos_(ot +5)

Note that the maximum displacement is Xmax = A, the maximum

velocity iS Vmax =®A and the maximum acceleration IS amax

=An?.
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5.3 Energy Considerations in Simple Harmonic

Motion

For the simple harmonic motion the displacement is given by

X = Acos (ot +9) (5.12)
The total energy is given by
E= K+ U (5.13)
The potential energy U at any instant is given by
U=1/2 k x?
= 1/2 k A%c0s? (ot +8) (5.14)

The kinetic energy K at any instant is 1/2 mv?, where
V = dx/dt = - ®A sin (ot + )
Then K = 1/2 mo?A? sin(ot +§ )
Where ®? = k/m
K =1/2 kA% sin®(ot + 8 )
Therefore
E = 1/2 kA?sin?(ot + § ) +1/2 kA? sin(ot + 8 )
or
E = 1/2 kA2 (5.16)

el A horizontal spring is found to be stretched 3 in . from
its equilibrium position when a force of 0.75 Ib acts on it. Then
a 1.5 Ib body is attached to the end of the spring and is pulled 4

in. along a horizontal frictionless simple harmonic motion .
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a) what is the force constant of the spring ?
b) what is the force exerted by the spring on the 1.5 Ib body
just before it is released ?
¢) what is the period of oscillation after release ?
d) what is the amplitude of the motion ?
e) what is the maximum speed of the vibrating body ?
Solution
a) The displacement x =3/12 =0.25 ft
K=F/x =0.75/0.25 = 3 Ib/ft
b)  The spring is stretched 4.0 in or 1/3 ft . Hence
F=-kx=-3.0x1/3=-1.01b

\E lwi/ g [15/32
C) T =2n k=2n k=27t 3

=n/4= 0.79 sec.
d) The amplitude is the maximum displacement which
corresponds to zero Kkinetic energy and a maximum potential
energy . This is the initial condition before release , so that the
amplitude is the initial displacement of 4.0 in, hence
A=4.0in.=4/12 =1/3 ft.

e) Vima=0A=(21/T) A=/ n/4)=2.7 ft/sec.
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5.4 Application of Simple Harmonic Motion

1- Simple Pendulum

A simple pendulum consists of a point mass, suspended by a light
inextensible cord. When pulled to one side of its equilibrium
position and released, the pendulum swings in a vertical plane

under the influence of gravity. The motion is periodic and

oscillatory.
6
l

T
me... X=10
9 \‘mg sin

mg cos 6
mg
Fig.5.2

Figure 5.2, shows a pendulum of length 0 particle mass m

making an angle 0 with the vertical . The forces acting on m are
mg, the gravitational force, and T, the tension in the cord. Resolve
mg into a radial component of magnitude mg cos® , and a
tangential component of magnitude mg sinf. The radial

component of the forces supply the necessary centripetal
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acceleration to keep the particle moving on a circular arc. The
tangential component is the restoring force acting on m tending to
return it to the equilibrium position. Hence, the restoring force is
F=-mgsin6
If the angle 0 is very small , then
sinf ~ 0
and we obtain

F=-mg0®=-mgx/¢ =-(mg/l)Xx

For small displacements, the restoring force is proportional to the

displacement and is oppositely directed. The constant (mg/¢)

represents the constant k in F = -kx , thatis, k=mg//

The period of a simple pendulum when its amplitude is small is

m /
T= 272\/% = 27z\/§ (5.17)

The simple pendulum provides a convenient method for

measuring the value of g, the acceleration due to gravity.
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6.1 Properties of Electric Charges:
(1) There are two kinds of electric charges, positive and
negative charges
e Unlike charges attract each other
e Like charges repel _8.% each other
(2) Charges are conserved ((i.e.) it does not create but it
transfers from body to other).
(3) Charges are quantized.
g=Ne, where N is some integer
C bl 3 aslsSI (oo A jeSl Aiatl) (uld saa () Y
nC=10°C uC=10°C

Materials are divided into three types
1. Conductors : &Sz sall
In these materials, electric charges move freely.
2. Insulators : J)) sl
In this material, there are no free charges.
3. Semiconductors : < b sall slul
Their electrical properties are intermediate between

conductors and insulators.

6.2 Coulomb's Law:

1. The force is directly proportional to the product of charges

(0102)
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F. «<Qq,0,

0@ @ 02

2. The force (repulsion or attraction <33l 51 &ll) js inversely

proportional to the square of the separation (r) between
charges.

1
Fe X 7"_2
3. The force is attractive if the charges of opposite sign and

repulsion if the charges have the same sign.

Gy /|0,

r2

Then, F, oc qlrgz = F =K

Where K is Coulomb constant and can be given by
1

Are,

K= = 9x10° Nm?*/C?

Fe has SI unit as Newton

Note > Newton's universal law of gravity:

Gravitational force Fg between two masses m; and m;
separated by a distance r is given by:

F. =G ml_gnz Its unit also is Newton.

r
Where, G (iis constant) = 6x10* N.m?/kg?.

The force is a vector quantity, so we can write the force on g2

due to gz as:
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|:21 =K qigz I

AN

where I,, : is the unit vector directed from gz to gx

< r >
Repulsion force
i B D F
ql r q2

Attraction force > @-»E - -‘F_@
Qs .

Notes
e The electric force exerted by g2 on qx is equal in magnitude

to the force exerted by g1 on g2 and in the opposite direction

- -

Fo=—F,
1. If g1 and g2 have the same sign, the product g102 is positive
and the force is repulsive.
2. If g1 and gy are of the opposite sign, the product g:q is

negative and the force is attractive.

Object A has a charge of +2uC, and object B has a
charge of +6 uC. Which statement is true.
(@) Fas=-3Fga (b) Fae=-Fsa (c) 3Fas= -Faa
Solution

Fre =—Fea
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e If there are four charges qi, g2, g3, and g, the resultant force
on Qs is:

F1= Far+Fai+Fa

The electron and proton of a hydrogen atom are
separated by a distance 5.3 x 10''m. Find the magnitude of the
electrical force and the gravitational force between the two
particles.

Solution

e’ %10° (1.6 x107%°)?

. = (5.3 x10°5)7 |52 x107¢ N

MM, _ o 1gn (911 x107*)(1.67 x10*")

= (5.3 x10°5): =|3.6 107" N

at = 2 x10*
l:

G

Therefore, the gravitational force is negligible compared with

electric force.

=EW R Three charges lie along the X axis as in the figure.

The positive charge 0, =154C is at x=2m and the positive charge
g, =6uC is at the origin. Where a negative charge gz must be

placed on the X-axis such that the resultant force on it is zero?

g2 s q1
+@—e > ar
Fs2 Fs1
«— 2-Xx

89
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Solution
e If the net force acting on qs is zero, then the force F3; must

be equal in magnitude and opposite in direction to the force
F32.
e The two forces acts on gz are F3; and F3, (Attractive forces)

e Let x be the coordinate of g; between g; and 0.

d,;9 d,;9
F, =K —(ijl)z and F, =K —;22
Y>F =0 =. . F,—-F,=0 = F, =F,
q3q1 q3q2 ql q2
(2—-x)? X ? (2—-x)* x°?

(4—4x +x%)g, =0, x*
(4—4x +x2)6x10° =15x10° x2 = (4—4x +x?)2 =5x?
—8+ /64 —4*3*(-8)

3x°+8x —8=0 =X =
2*3
. -8+\/64+96 _-8+/64+9
6 6
We find that x = 0.775 m. Then, gs must be placed at 0.775m
from Q2
Note That:

The general form of quadratic equation is
ax’ +bx +c =0

 —b++b?—4ac
Its solution is X = 23
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el Two identical small charged spheres, each having a
mass of 3x 102 kg, hang in equilibrium as shown in Figure. If the
length of each string is 0.15 m, and the angle is 5°. Find the

magnitude of the charge on each sphere.

T com B ————
IE’
=R
L=0.15m
g =507 Lt
(ay (bl
Solution
From figure () sing=2
L

a=Lsin@=0.15 xsin(5) =0.013m
Then the separation of the two charged spheres is r = 2a =0.026m.
From fig (b) because the two spheres are in equilibrium then the

resultant force in the X and Y directions must be zero.

YF.=YF, =0
() Y F=Tsind-F,=0 =F, =Tsino
mg
2 F,=Tcosfd-mg=0 =>T=——
@ LF . cos
sin@
Fe_mg@_mgtana

F, = (3x107% Kg)(9.8m/s?)tan(5) = 2.57 x10* N
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From coulomb's law:

, F,r* (2.57x107)(0.026)
K 9x10°

2
F. = K?z = q =1.93x107°C?

So, the magnitude of the charge on each sphere is q=4.4 x8C.
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7.1 The Electric Field (=4S Sl
The electric field E is defined as: "the electric force F acting on a

positive test charge divided by the magnitude of the test charge

Jo

E=' put F=k9%
d, r

Then, @ oa

(N/C) 8 (V/M) A 2 8SY Jinal) (b Baa g

The direction of the electric field:
e If qis positive (+ve), the direction of E is outward from g

e If g is (-ve), the direction of E is toward g as shown in the
Fig.7.1.
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Note
At any point P, the total electric field due to a group of charges

equals the vector sum of the electric fields of the all charges.

_—  — —  —

E=E +E, +E+..= K> iy

Where ﬁ Is a unit vector directed from ¢; towards point P.

Find the electric force on a proton placed in an electric
field of 2x10* N/C directed along the positive X-axis.
Solution
E=F/q, g=e
The force on a proton is
F=qE=eE=(16x10"%)(2x10*)=3.2x10°N

7.2 Electric field lines
e The electric field lines are drawing to point to the direction of
electric field vector.
e The rules of drawing the electric field lines:
1. The lines must begin on positive charges and enter to

the negative charges.
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2. These lines represent the direction of electric field.

3. No two lines can cross.

°n

4. The direction of electric field vector is tangent to the

electric field line at each point.

A charge g; = 7uc is located at the origin. In
addition, a second charge g, = —5puc is located on the X-axis at
0.3m from the origin. Find the electric field at the point P with
the coordinates (0,0.4) m.
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Solution

e The electric field for g, is:

-6
E, =K % = (9x10) X2 _3.94x10° N /¢
r (0.4)

1

¢ The electric field for g, is:

-5
X107 ) 6510 N /¢

E, = K2 = (9x10°) 2~ =
r (0.5)

2

The y-component of E is :

E, = E, - E,sing = 3.94x10° —1.8x10° xg'g =25x10°N/C

The x-component of E is :

E, =E,cosf= 1.8x105x8'§= 1.1x10° N /C

Then, the total field E has the magnitude:

E=,E +E®=.(1.1x10°)*+(2.5x10°)* =2.7x10° N /C
X y

LB, 25x10° .
The Field direction: ¢ =1an 1E_y: LI 10° =221 = ¢=66

X

7.3 Electric field of a Dipole
An electric dipole "Consists of a positive charges (q) and a

negative charge (— q) separated by a small distance 2a".

2
PD—=2 g
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el Find the electric field E due to a dipole along the Y-
axis at a point P, which is a distance y from the origin. Assume

that y>>a.

Solution
At point P, the fields E; and E; due to the charges of dipole, which

are equal in magnitude:

g q
E1=E2=KF=KyZ+az

(1) E, =E,;sind-E,sind=0

Therefore, the y-component cancel each other.

(2) E,=E,cosf+ E,cosé=2E,coséd
a a
'.'E=EX=2E10030 but COS=F=W
q a _K 20a
(y2+a2)'(y2+a2)1/2 (y2+a2)3/2
for y>>a = y*+a‘~y’

20a

E=KT:

i.e. fordipole E %
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Hgele]Flggll Consider three point charges located at the corners of
a right triangle as shown in Figure below, where q1=03=5 pc, g2=

-2 uc, and a= 0.1 m. Find the resultant force exerted on Q.

g gele] (1 Three charges q1 =12 uc, g2 =5 pc and gz = -2 pc are
placed at the corners of a triangle of equal sides L=0.2 m. Find

the force acting on charge gz due to g: and Q.
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8.1 The Electric Flux "¢ =Sl o2l

The Electric Flux is the number of field lines crossing normally

an area A. A
CWELA: §=EA —
o —E
[ . L,

to the area A then, ¢=E Acosé

e If E//A = 60=0 = cosfé=1

e f ELA = =90 = cosfd=0
Due to, 0<cos#<1, so the maximum value of ¢ is EA.

For general surface

The surface will be divided into small elements of area A Ai, so
the flux due to this element is Ag =E, . AA =E, AA cosé

Then the total flux is
¢=[E.dA=[EdAcosd
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8.2 Gauss's law
Gauss’ law relates the net flux of an electric field through a closed
surface.

It can given by

g = Im
€0

Hence, gin is the net charge inside a surface
din =q1tq2 +q3 +
& IS the permittivity of free space
g = 8.85 x 10712 C2/N.m?
The Gauss's Law depend only on the enclosed charges inside the

Gaussian surface, with don't care to the surface shape.

8.3 Applications of Gauss's Law
a. The Electric Field of Infinite charged rod length
Figure 8.1 shows a section of an infinitely long cylindrical plastic
rod with a uniform charge density A. It is desired to find an
expression for the electric field magnitude (E) at radius r from the
central axis of the rod, outside the rod.
The net flux through the cylinder is then:

@ = EAcosO = E(2nrh)cos0 = E(2nrh)

Gauss’s law we have the charge qin enclosed by the cylinder.
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For linear charge density (charge per unit length, remember) is

uniform, the enclosed charge is g=24h

2nr

Gaussian
surface

-D\ﬁ

There is flux only
through the
# curved surface.

Fig.8.1

e e e e >

Ah A
EQ(2nrh) =— > E =
o 2TEYT

=Elll [l Assume a narrow vertical cylinder of height h=1.8 m

and radius r=0.10 m. The charge Q was uniformly distributed

along the cylinder and that electrical breakdown would have
occurred if the electric field magnitude along the cylinder is
E=2.4 x10° N/C. What is value of Q.

Solution

A Q/h

2TEYT  2TTEYT

Q =2.4x%x10°x%x1.82x%x3.14 X 0.1 X885 x 10712 = 24uc

E

- Q = E2hmeyr
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b. The Electric Field of Infinite charged Plane Area
Figure 8.2, shows a portion of a thin, infinite, non-conducting
sheet with a uniform (positive) surface charge density o. A sheet

of thin plastic wrap, uniformly charged on one side, can serve as

a simple model. Let us find the electric field E a distance r in

front of the sheet.

SN Y A

=¥

. r—0c
/
+
+

Gaussian
4+ surface

+E

e
By
XA x A&

There is flux only
through the
two end faces.

N

’_T
1
+;++
LA
Sy TR
i [
v N X & X
| !
i%
o )
AN %
R
o
\/

R e
X% X
**T
R
it
"

Fig.8.2

From symmetry, E must be perpendicular 25« to the sheet and
hence to the end caps. Furthermore, since the charge is positive,
is directed away from the sheet, and thus the electric field lines

pierce 3_43 the two Gaussian end caps in an outward direction.

din = €0 f E.dA = o jé EAcosBdA

in = &0 7€ EdA + ¢, f EdA

First end Second End

= g,(EA + EA) = 2¢,EA
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Chapter 8 The Electric Flux

Where cA is the charge enclosed by the Gaussian surface. This

gives:
p_
2¢
c. The Electric Field of uniformly charged Sphere
Figure 8.3, shows a charged spherical shell of total charge q and
radius R and two concentric spherical Gaussian surfaces, S; and
S2. Apply Gauss’ law to surface S, for which r>R,we would find

that

Fig.8.3

® = EAcosf = in
€o

q q
E = =
Agy, 4mrieg,

For inside the sphere q=0, so E=0.
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8.4 Electric Field of a Continuous Charge Distribution
1. If the total charge Q is uniformly distributed on a volume V,
The Volume charge density:

p=2 (C/m)

o)
AE,

2. If the total charge Q is uniformly distributed on a surface
area A, The surface charge density:

0'=% (C/m?)

3. If the total charge Q is uniformly distributed along a line of
length I, The linear charge density:

4:% (C/m)

The Electric Field of a Finite Line Charge:

A rod of length | has a uniform positive charge per unit length A
and total charge Q. Calculate the electric field at a point P along
the axis of the rod.

y
P<—X Ax
S
AE 3 ++N\[+ +++++++ |—x
<—d—>< / >

106



Chapter 8 The Electric Flux

1=9=ﬂ = Ag=AAX

I AX
Aq is the charge of the element of length A x

The electric field due to the element (AE) at P:
AAX

2

AE=K29_k
X X

Thus, the total electric field E:

l+d l+d I+d
E=IK29§=KAIE;=KALEJ =K4L~i—+5}=Kﬂ |
d X e X X 14 l+d d

ﬂ=$ = Q=Al

K Q
d(d +1)

If d>>| = E-= Kc?_z (The rod appear as a point charge)
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Chapter 9

The Electric Potential
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Chapter 9 The Electric Potential

9.1 The Electric Potential Difference

The electric potential difference AV at a point P is the
difference in the electric potential energy per unit charge. Its unit
is 1 volt (J/C)

q q
A test charge go moves from point i to point f along the path

AU W
AV =— =

shown in a non-uniform electric field. During a displacement s,

an electric force F acts on the test charge. This force points in the

direction of the field line at the location of the test charge.

Path

Field line \

’IOE
The work W done on a particle can be given as:
f f
W = j F.ds = f FcosO.ds
i i

where 0 is the angle between the force and the displacement.

v F=qyE

f
~ W = qOJ Ecos0.ds
i

f
AV = —J Ecos0.ds
i
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So in a uniform electric field when the force in the same
direction of the electric field, this relation can be written as:
AV =V, =V, = —-Ed

Where d is the total displacement for the charge.

=Cloll Find the electric potential of the following charge
path that shown in Fig.9.1

45

o /
a5 [
sz

‘i Higher potential £__>E)G3J.[> - cy:
El

d?x'rlf /

[
v y f v vy [ ¥ ' \ \ Y

Lower potential

Casel Case 2

Solution

Case 1
The motion is in the same direction of the electric field lines,
0=0 then:

AV =V -V, = —Ed
Case 2
The first path from i to ¢, the motion is normal to the electric
field line so 6=90°, and there is no potential difference V., = V;
The second path from c to f, 6=45°,
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Chapter 9 The Electric Potential

f f
~ AV = —f EcosO.ds = —Ecosf j ds
C C

The distance from c to f can be calculated as ﬁ

d

= —Fd
cosf

f
AV = j Ecosf.ds = —Ecosf
C

9.2 Potential Due to a Charged Particle
Consider a test charge go in a non-uniform electric field as shown
in Fig.9.2. It moves in the same direction of the electric field line

to infinity through point P at a distance R.
P

—1 &

2
70

AV = —j EcosO.dr
R

for 6=0 and cos6=1

v E=k—
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“1

AV = —kCIf r—ZdT

R

1
AV = kq[-]7 = 0-V

Hence at infinity V=0

What is the electric potential at point P, located at the
center of the square of charged particles shown in Fig. 9.3. The
distance d is 1.3 m, and the charges are: (k=9X10°)

g1=+12nC , 2=-24nC, g3=+31nC, gs=+17nC

% 9o
T | T
(Jl . (JI
Q—<—Q
93 44
Fig.9.3
Solution

V=V 1+V7r+V3+V,

V:k[ﬂ+ﬂ+ﬂ+ﬂ]
rn T T3 I

112



Chapter 9 The Electric Potential

: ’ d2 d
For the same distance — ri1=r=r3=rs= |2 X =5

v 9 x 10°
1342

[12 — 24+ 31+ 17] X 10~ = 350V

Two parallel charged plates have potential differenve
12V (Battery). If the distance between the plates 0.5cm. Find the
magnitude of the electric field.
Solution
For a uniform electric field
AV = —Ed
AV=12V, d=0.005m
E=-2.4X10° V/m
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Chapter 10

Capacitance
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Chapter 10 Capacitance

10.1 The Capacitor

Capacitor is two isolated conductors of any shape separated by
dielectric material.

Figure 10.1 shows a capacitor with two plates separated by
distance d with sectional area A. The two plates are charged with

two opposite charges g which induced by a potential difference

v Electric field lines

{
+¢
A (7!
YYVIIIVIVIVY VY )
~q

Top side of
bottom
plate has
charge —¢

Bottom side of
top plate has
charge +¢

Fig.10.1

QxV—>Q=CV

where Q the magnitude of the charge on the plate, C the

capacitance of the capacitor its unit called Farad (F).

10.2 The Capacitance Calculating
To relate the electric field E between the plates of a capacitor to

the charge g on cither plate, use Gauss’ law:

q=eoj€E.dA

For a uniform electric field
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q = EA
+
AV = —J E.ds

let the potential difference AV labeled as V
V =Ed
oEA A
~Ed %4
Hence ¢, is the permittivity of the dielectric material (almost in
the course 8.85X10%2 F/m).

Two parallel plates capacitor have a separated
distance 5mm with area 2m?. A potential difference of 10kV is
applied to the capacitor. Find:

a) The capacitance,

b) The Plate charge,

c) The electric field.

Solution
d=0.005m, A=2m?, V=10000 volt

a)
C= eoé = 885X 10712 = 3.54 x 10-°F = 3.54nF
d 0.005
b)
Q =CV =3.54 x107° x 10* = 35.4uC
C)

%
E=—=2x10/m
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10.3 The Capacitors Connections

a. Capacitors in Parallel

(Z_ Terminal
N E T4 T4
BTV v % 3
—q?,‘cg —q2|Co T 1 ‘cl

T

Terminal

qg.=CV, qg,=GCV, and q;=GC,V.

q=q1+q+q;=(C; + G5+ G) V.

C?:%=Q+Q+Q

eq
a. Capacitors in Series

T vw=-L and v=-1

=7~ h=7

1 1 |
V=V1+V2+V3=q<c b )

q 1
Ce — — .
TV G+ G + 1/G
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[ Terminal

|
=
S
£

L

=
el +
|
]
~
P
l\;\'
-
[
~
r\gphl

|
=
ISl
o

=ElglelW4 Find the equivalent capacitor of the following, then
if the supply voltage 12.0v, find the total charge.:

A A
5‘ L f_.—l 5\
C‘l = C'L_) = E:lfz =
12.0 uF 5.30 uF 17.3 uF
Vv v B v Cig3 =
15 3.57 uF
Cs = Cs =
4.50 P’Fl 450 uf |
(@) () (¢)
(——— g—
Fr23 =
44.6 uC
125V 125V
Ciog = | Vieg = Cio3 = | Vigs =
3.07 uF | 125V 357 ukF| 125V

(d) (¢)

Q =CV =125x3.57x107° = 44.6uC
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10.4 The Energy Stored in Capacitors

The energy stored in capacitor equals the work done to
charge the capacitor.

Suppose that, at a given instant, a charge g has been
transferred from one plate of a capacitor to the other. The
potential difference V- between the plates at that instant will be
g/C. If an extra increment of charge dq is then transferred« the

increment of work required will be,
1
dW =Vdq = Eqdq

The work required to bring the total capacitor charge up to a final

value Q is

W=
2C

This work is stored as potential energy U in the capacitor, so that

U=w=>2crz=Lqv
=W=gtvr=30

The Energy Density
The energy density u is the potential energy per unit volume

between the plates.

U
Y= ad
%cvz %(eo g)EZdZ
u —_— —_—
Ad Ad
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1
= —¢g.E?
u 280

An isolated conducting sphere whose radius R is 6.85
cm has a charge Q =1.25 nC. Find:
a) How much potential energy is stored in the electric field of
this charged conductor?

b) What is the energy density at the surface of the sphere?

Solution
a)
2 2
2C 5, A
Od
For sphere A = 4wR?,d = R
U - Q? _ 1.25x 1072 — 103 x 10-7
~ 8gymR 8m(8.85 x 10~12)(0.0685) /
b)
Q
E - kﬁ
1 1 Q? _
u = ESOEZ = Eeokzﬁ = 2.54x107°J/m3 = 25.4uJ /m3

10.5 Dielectrics

- It is a non-conducting material such as glass, plastic, paper,...

etc.
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Chapter 10 Capacitance

If the space between the plates of a capacitor is completely
filled with a dielectric material, the capacitance C in (vacuum or
effectively, in air) is multiplied by the material’s dielectric
constant k, which is a number greater than 1.

The dielectric constant of the insulating material is shown
in the following table.

Dielectric Dielectric
Constant Strength

Material K (kV/mm)
Air (1 atm) 1.00054 3
Polystyrene 2.6 24
Paper 3.5 16
Transformer

oil 4.5
Pyrex 4.7 14
Ruby mica 54
Porcelain 6.5
Silicon 12
Germanium 16
Ethanol 25

Water (20°C)  80.4
Water (25°C)  78.5

Titania
ceramic 130
Strontium
titanate 310 8

For a vacuum, k = unity.

Edielectric > Eair
Edielectric = keair = Cgielectric = kCair

where K is the dielectric constant
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A parallel-plate capacitor whose capacitance C is 13.5
pF is charged by a battery to a potential difference V=125 V
between its plates. The charging battery is now disconnected and
a porcelain slab (k=6.50) is slipped between the plates.
a) What is the potential energy of the capacitor before the slab
IS inserted?
b) What is the potential energy of the capacitor—slab device
after the slab is inserted?

Solution

1 1
U=5CV?=2(135x 1071)(12.5)* = 1055p]

b) Because the battery has been disconnected, the charge on the
capacitor cannot change when the dielectric is inserted.

_QZ_ Q2 _Uair_1055
2C 2kC k65

U = 162p]
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