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Basic Results and Concepts

I. GENERAL INFORMATION

1. Greek Letters Used

a alpha 0 theta k kappa T tau

P beta ¢ phi L mu y, chi

Y gamma W psi vnu ® omega

d delta € xi T pi I" cap. gamma

€ epsilon 1 eta p rho A cap. delta

iiota £ zeta o sigma X cap. sigma
A lambda

2. Some Notations

€ belongs to U union ¢ doesnot belong to

N intersection => implies / such that

<> implies and implied

by

3. Unit Prefixes Used

Multiples and Prefixes Symbols

Submultiples

103 kilo k

102 hecto h

10 deca da

10-1 deci* d

10-2 centi* C

10-3 milli m

10-6 micro 1

* The prefixes 'deci' and 'centi' are only used with the metre, e.g., Centimeter is a

recognized unit of length but Centigram is not a recognized unit of mass.

4. Useful Data

e=27183 1/e = 0.3679 loge2 = 0.6931 loge 3 = 1.0986
n=3.1416 1/7=0.3183 loge10 = 2.3026 logioe = 0.4343
V2 =14142 3=1732 1 rad. = 57017'45" 10 =0.0174 rad.
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5. Systems of Units

Quantity F.P.S. System C.G.S. System M.K.S. System
Length foot (ft) centimetre (cm) | metre (m)
Mass pound (Ib) gram (gm) kilogram (kg)
Time second (sec) second (sec) second (sec)
Force 1b. wt. dyne newton (nt)

6. Conversion Factors

1 ft. = 30.48 cm = 0.3048 m 1m =100 cm = 3.2804 ft.

1 £ft2 = 0.0929 m? 1 acre = 4840 yd2 = 4046.77 m?
1ft3= 0.0283 m3 1 m3=35.32 f3

1 m/sec = 3.2804 ft/sec. 1 mile /h=1.609 km/h.

II. ALGEBRA

1. Quadratic Equation : ax2 + bx + ¢ = 0 has roots

_ —b+,/(b2 — 4ac) - —b — J(b® — 4ac)

2a 2a
o+ Pp=— R, af = <.

a a
Roots are equal if b2 — 4ac=0
Roots are real and distinctif b? — 4ac>0
Roots are imaginary if b2 — 4ac <0

2. Progressions
(i) Numbersa,a+d,a+ 2d. ..... are said to be in Arithmetic Progression (A.P.)

Itsnthterm Thy=a+ n— 1dandsumS, = % (2a+n —14d)

(ii) Numbers a, ar, ar?, ...... are said to be in Geometric Progression (G.P.)

n
a(l—r)lsw= 3 <)
1-—r 1-—-r
(iii) Numbers 1/a,1/(a + d), 1/(a + 2d),.... are said to be in Harmonic Progression

(H.P.) (i.e., a sequence is said to be in H.P. if its reciprocals are in A.P. Its nth term
T, =1/@@+n-1d).)
(iv) If a and b be two numbers then their

Its nth term T, = ar"~! and sum S, =

Arithmetic mean = % (a +b), Geometric mean = ./ab, Harmonic mean = 2ab/(a

+b)
(v) Natural numbers are 1,2,3 ...n.

2
Sn = n(n2+ 1) sn? = n(n + 1)6(2n 1) 3= {n(n; 1)}

v
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(vi) Stirling's approximation. When nis largen! ~ v2nn . n" e™".
3. Permutations and Combinations
! ! n
np, = n! ;C, = n! - P,
(n—r1)! ri(n —r)! r!

N, =Nc,Ng =1=nc

4. Binomial Theorem

(i) When n is a positive integer
(I+x)p=1+0Cyx+nCox2+0C3x3 + ....... +nCpxn,
(ii) When n is a negative integer or a fraction

(1+x)" =1+nx+ P——(n———l—zxz + nn-—1n - 2)x3 + ...,
1 1.23
5. Indices
(i) am. an = am*n
(i) (am)" = am
(iii) a=n = 1/an
(iv) n Va (i.e., nth root of a) =a'/".

6. Logarithms

(i) Natural logarithm log x has base e and is inverse of ex.

Common logarithm logiox = M log x where M = logioe = 0.4343.

(ii) loga 1= 0; loga0 = - o(a > 1) ; logaa = 1.

(iii) log (mn) = log m + logn ; log (m/n) = log m - log n; log (m®) = n log m.
III. GEOMETRY

1. Coordinates of a point : Cartesian (x ,y) and polar (r, 6).

Then x =r cos 6, y=rsin 0
or r= J(xz +y?), O=tan™’ (—Z)
X
Y &
P
r
y
9 >
O X X
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Distance between two points
(%1, y1) and (xg.y5) = [ (xa = 1) + (72— y1)? ]
Points of division of the line joining (x1, y1) and (x2, y2) in the ration m; : mz is

. [mlxz tmyXy myy, + m2y1]
’
m; +m, m; +m,

In a triangle having vertices (x1, y1), (x2, y2) and (x3, y3)
X 1
(i) area = 1 x; )},; 1.
2|x3 ¥3 1

(if) Centroid (point of intersection of medians) is
(X1+X2 X3 Y1ty +Y3]

’

3 3
(iii) Incentre (point of intersection of the internal bisectors of the angles) is

ax; +bx, +cx; ay;+ Dby, +cy;
atb+c ' a+b+c

where a, b, c are the lengths of the sides of the triangle.

(iv) Circumcentre is the point of intersection of the right bisectors of the sides of
the triangle.

(v) Orthocentre is the point of intersection of the perpendiculars drawn from the
vertices to the opposite sides of the triangle.

2. Straight Line

(i) Slope of the line joining the points (x, y1) and (x2, y2) = Y27 Y1
2~ %
Slope of the line ax + by + c=01is — %i. - %ﬁ—;

(if) Equation of a line:
(a) having slope m and cutting an intercept cony - axis is y = mx + c.
(b) cutting intercepts a and b from the axes is X4 % =1.
a

(c) passing through (x1, y1) and having slope m is y - y1 = m(x - x1)
(d) Passing through (x1, y2) and making an £6 with the x - axis is
X=X _Y—)"

cos 6  sin O
(e) through the point of intersection of the lines aix + byy + ¢1 = 0 and axx + byy +
c2=0is aix + byy + c1 + k (a2x + by + c2) =0

=r

(iii) Angle between two lines having slopes m; and m; is tan-! s bt 58 ﬁl;z
— mym;

vi
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Two lines are parallel if m; =m;

Two lines are perpendicular if mimz = —1
Any line parallel to the line ax+by+c=0isax+by+k=0
Any line perpendicular to ax+by+c=0isbx —ay+k=0

(iv) Length of the perpendicular from (x, y1)of the line ax + by + ¢ = 0. is
ax; + by, +c¢

(a? +b%)

P(x,y)

© X

3. Circle

(i) Equation of the circle having centre (h, k) and radius r is

(x = 2+ (y — kp=r2

(ii) Equation x2 + y2 + 2gx + 2fy + ¢ = 0 represents a circle having centre (~g, -f)
and radius = /(g* + f* — ¢).

(iii) Equation of the tangent at the point (x1, y1) to the circle x? + y2 = a? is xx1 + yy1
= a2

(iv) Condition for the line y = mx + ¢ to touch the circle

x2+y2=a?isc=a 1/(1+m2).

(v) Length of the tangent from the point (x, y1) to the circle

x2+y2+2gx +2fy +c=0is \/(xf— y? + 2gx, + 2fy; +c).
4. Parabola

(i) Standard equation of the parabola is y2 = 4ax.

Its parametric equations are x = at?, y = 2at.

Latus - rectum LL' = 4a, Focus is S (a,0)

Directrix ZM is x + a = 0.

Vil
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M L7 P(x,y)

o

1}

<

+

Pd

zZ| A S (a, 0) X

L~

(ii) Focal distance of any point P (x1, y1 ) on the parabola
y2=4axisSP=x; +a

(iii) Equation of the tangent at (x1 y1) to the parabola

y?=4ax is yy1 = 2a (x + x1)

(iv) Condition for the line y = mx + ¢ to touch the parabola
y2=4axisc=a/m.

(v) Equation of the normal to the parabola y2 = 4ax in terms of its slope m is
y = mx — 2am - am3,

5. Ellipse

(i) Standard equation of the ellipse is

2 2

a2 b2

viii


a
Typewritten Text
viii


Its parametric equations are
X=acos9, y =bsin 6.

Eccentricity e = |(1— b* / a%).

Latus - rectum LSL' = 2b?/a.

Foci S (— ae, 0) and S' (ae, 0)

Directrices ZM (x =-a/e)and Z'M' (x = a/e.)

(ii) Sum of the focal distances of any point on the ellipse is equal to the major axis
ie.,

SP +S'P =2a.

(iii) Equation of the tangent at the point (x1 y1) to the ellipse
2 2

A § e R A SRR )

a b a b~

(iv) Condition for the line y = mx + ¢ to touch the ellipse

X2y

a_2+ i—z =lisc= (azm2 + bz).

6. Hyperbola
(i) Standard equation of the hyperbola is

LS A

a’ b?

Its parametric equations are
x=asecH,y=btan 0.

Eccentricity e = /(1 + b? / a?),
Y4

Ml

zZ'l C

Latus - rectum LSL' = 2b?/a.
Directrices ZM (x = a/e) and Z'M' (x = - a/e).
(i) Equation of the tangent at the point (x1 y1) to the hyperbola

1X
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. XX b4
=1is ==L — 2Z1 =1,
a’ b?

X
pea Xb? =1isc=(a’m?® — b?)

2 2
(iv) Asymptotes of the hyperbola -:—2— - —il—)—z— =1 are §+ % =0and % — _yl; 0.

(v) Equation of the rectangular hyperbola with asymptotes as axes is xy = ¢2. Its
parametric equations are x =ct, y =c/t.

7. Nature of the a Conic

The equation ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0 represents

b E
gfc

(if)acircle,ifa=b,h=0,A%0

(iii) a parabola, if ab — h2=0,cA#0

(iv) an ellipse, if ab — h2>0, A#0

. (v) a hyperbola, if ab—h2<0,A#0

and a rectangular hyperbola if in addition, a + b = 0.
8. Volumes and Surface Areas

(i) a pair of lines, if (=A)=0

Solid Volume Curved Surface | Total Surface
Area Area
Cube (side a) a’ 4a? 6a?
Cuboid (length 1, | Ibh 2(I+b)h 2 (Ib+ bh + hl)
breadth b, height
h)
Sphere (radiusr) | 4 3 _ 4mr2
Cylinder (base nrzh 2nrh 27r (r + h)
radius r, height
h)
Cone 1 oh nrl nr (r +1)
, 3
where slant height [ is given by I = (r? + h?).
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IV. TRIGONOMETRY

1.
go=0 |0 30 45 60 90 180 270 | 360
sin 6 0 Ya 1/J2 | 3 1 0 —-1/0
2
cos® |1 J3 1/\2 |1/2 0 -1 0 1
2
tan6 |0 1/¥3 |1 J3 © 0 — |0

2. Any t-ratio of (n. 90° + 8) = + same ratio of 6, when n is even.

=t co - ratio of 8, when n is odd.

The sign + or — is to be decided from the quadrant in which n. 90° + 6 lies.
e.g,  sin5700=sin (6 x 900+ 300) = —sin 300 = — % ;
tan 3150 = tan (3 x 900 + 459) = — cot450= — 1.
3.sin(A+B)=sin AcosB+cos AsinB

cos (A ¥ B)=cos AcosB+sinAsinB

sin 2A = 2sinA cosA = 2 tan A/(1 + tan> A)

COSZA:COSZA——smzA=1—251n2A=20082A——1=—————anz —.
1+tan” A
tan A B
4tan(AtB)= _onAztanb oo _2t0A
1 F tanAtanB 1 — tan? A
S'SinACOSB=%[Sin(A+B)+sin(A—-B)]

cos AsinB = % [sin (A + B) — sin (A —B)]
coaAcosB= % [cos (A + B) + cos (A — B)]

sin A sin B = %[cos (A — B) — cos (A + B)].

+ —
6.sinC +sin D =2sin C2D cos ¢ ZD

+D C-D
sinC — sinD =2 cos C2 sin 5

+D - D
cos C + cos D =2 cos C2 cos ¢ 5

+ D - D
cosC — cos D= — 2sin C2 sin ¢ 5

7.asinx +bcos x=rsin (x + 0)

X1
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acosx +bsinx=rcos (x — 0)
where a=r cos, 9, b=rsind so thatr = (a2 + b? ), 6 =tan-1 (B)
a

8. In any AABC:

(i) a/sin A =b/sin B = ¢/sin C (sine formula)

b’ +c? — a?
2bc

(iii) a = b cos C + c cos B (Projection formula)

(iv) Area of AABC = —;—bcsinA=\[s(s T 2)6 —Db) (5 — ) wheres= —;—(a+b+c).

(if) cos A = . (cosine formula)

9. Series
. . x  x* X
(i) Exponential Series: ex=1+ — + — + —+ .....©
1 21t 3t
(i) sin x, cos x, sin hx, cos hx series
x3 x5
SINX =X = — + — — | ®,
3! 5!
x2  x*
s x=1— —+ ——~ . 00
21 41
3 5 2 4
smhx=x+—+x—+ ...... o, coshx=1+x——+x—+ ..... )
3 5! ! 4!
(iii) Log series
2 3 2 3
x° . x x“ X
log(1+x)=X -~ 4+ — — .0, log(l ~xX)=— |xX+ —+ —+ . .©
g+=x— 2+ 2 g (1) [ 2 ]
(iv) Gregory series
XXX 1 1+x XX
tan"! x=x — -+ — — o, tanh™! x= = log =x+ —+ 4 .00
3 5 2 1-—x 3
10. (i) Complex number : z = x + iy = r (cos 0 + i sin 0) = re®
(ii) Euler's theorem: cos 6 + i sin = e®
(iii) Demoivre's theorem: (cos 6 + isin 8)* = cos n@ + i sinn 6.
. . ex_e—x eX +e-—X
11. (i) Hyperbolic functions: sin h x = — ;coshx = —
tanhx=smhx;cothx=C?th;sechx= 1 ; cosechx = .l
cosh x sin h x cos h x sin hx

(ii) Relations between hyperbolic and trigonometric functions:
sinix=isinhx;coshx=coshx;tanix=itan hx.
(iii) Inverse hyperbolic functions;
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sin h™'x = log[x + Yx* + 1 |; cosh™!x = log[x + Vx* —1]; tanh™! x = % log

V. CALCULUS
1. Standard limits:

n n
. X" —a -
(i) Lt =—— =na""!,
X —>a X— a
n any rational number

(i) Lt Q1+x)*=e
x—>0

a*—1

(v) Lt = log.a.
x—=>0

2. Differentiation

., d _dv du

(i) ” (uv)=u x +v i

du _ du
dx dy

(i) ()= e"

. d (chain Rule)
dx

£ (oge) =1/
o do
(iii) — (sin x) = cos x
: dx
4 (tan x) = sec? x
dx

4 (sec x) = sec x tan x
dx

.y d . 1

(lV) g" (sm 1X) = —'—"—2
x (1 —x%)

d . 1

— (t =

o T T

_ (sec_lx) = _____1__

xJ(x? = 1)

(v) —5; (sinh x) = cos hx

4 (tan h x) = sech? x
dx

@) Lt 28X
x>0 X

=1

(iv) Lt x/*=1

X—>» ©

d (u)= vdu / dx — udv/dx

dx \v v2

4 (ax+b)" =n(ax+b)" . a
dx

%(a") =a” log.a

d
— (1 = .
dx (logx) x log a
d _ .
o (cos x) = — sin x
d = 2
= (cot x) = — cosec2x
ad— (cosec x) = — cosec x cot x.
X
_g._ (Cos—lx) = ____—_.1...__
d 2
X 1 =x%)
-1
—_ t_l =
(cot™"x) P

-1
x,/(x2 -1) '

4 (cos hx) =sinh x
dx

d “1,y =
™ (cosec™"x)

4 (coth x) = —cosec h2 x.
dx

(vi) D» (ax + b)m = m (m 1) (m — 2)..... (m—n+1)(ax+b)m-n.an
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Drlog(ax + b)=(— 1)»-1(n — 1) !ar/(ax + b)»

Dn (emx) = mNemx Dn (amx) =mn (loga)n. amx

Dn[sm ax-l'b]= 2, p2\n/2 qax |sin(bx +c+ntan™ " b/a) |
cos%bx+c3 ( yrTe cos(bx+c+ntan” 1 b/ a)

(vii) Leibnitz theorem: (uv)n
= Up + nClun-—lV]+ “Czun_2V2 + ... + nCrun—rVr + ... + nCnVn.

3. Integration
n+1

. n _ X _ 1
(i) jx dx 1 n#-1) jx dx = log,.x
Ie" dx =e* Ia" dx=a"/log.a
(ii) Jsin x dx = — cos x jcos x dx = sinx
J‘tan x dx = — log cos x J'cot x dx = log sin x
j T X
sec x dx = log(sec x + tan x ) = log tan (Z + —-2-)

Icosec x dx = log(cosec x — cot x ) = log tan (—)25)

Isecz x dx = tanx Icosecz xdx = — cotx.
dx 1 -1 X dx .1 X
(111) ;ET;{:'a—tan ! -a' I——z—‘—z":SHl ;‘
(a® = x?)
+
j‘ dx =_1_log atx J~ dx —sinh-! X
a> —x*> 2a a—x (a% +x?) a
"‘2dx2___11 X —a J' dx - cosh-! X,
x* —a® 2a a+x (x* — a?) a
2 2 2
2 2 X a _X) a -1 X
iv a x°) dx = — sin
() [Jla - =) ax= 20 - sin™ >
2, .2 2 2
o ax="NE D) 28 x X L 2
I(a+x)dx 5 +25mh " > (@ +x°) 2log
2 _ 2
J.(x2 az)dx—x xz a)+a cosh_1§=—;i— (xz—az)—%—log
ax
(v) |e* sinbx dx= ————(asinbx — b cos bx)
a

X1V
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ax

.[ea" cos bx dx = (a cos bx + b sin bx)

a? + b2
(vi) Isin h x dx =cos h x Icos hxdx=sinhx
Jtan h x dx =log cos h x Icothxdx=logsinhx
J'sec h? x dx =tan hx Icosechz xdx= — cothx.

o [? 2
(vii) f sin™ x dx = f cos” x dx

_(n-=-1)n=3)(n-=75)... N
n(n — 2)(n — 4)

(—;—, only if nis evenj

(m—-1)(m —=3)..x@m—1)(n— 3)....
(m+n)(m+n—-2)(m+n—4)..

/2 LI 4 ¢ n
.[: sin™ x cos” xdx =
x (g— , only if both m and n are even)

(viii) f f (x) dx = E f(a — x) dx

f f(x) dx =2 J:f(x) dx, if f (x) is an even function,
a

= 0, if f(x) is an odd function.

f "f(x) dx = 2 J:f(x) dx, if f(2a — x) = f(x)

=0, if f(2a — x) = - f(x).
VI. Coordinate systems

Polar coordinates | Cylindrical Spherical polar

(r, 6) coordinates (p, ¢, z) | coordinates (r, 6, ¢)
Coordinate X=r cosH X=pcosd X =r 5ind cos ¢
transformations |y =rsin 6 y=psin¢ y=rsin0sin¢

z=1z z=r1Cos 9
Jacobian a(x,y) _ . ox, vy, 2z) _ o ox, y,z) _ 2 sin 6
a(r, 0) op, ¢, 2) ar, 6,0)

(Arc - length)? (ds)2=(dr)2+12 | (ds)2=(d p)2+ p2 (ds)? = (dr)2 + r2

(de)? (d¢)? + (dz)? (d6)2 + (r sin 6)?

dx dy = rd8 dr (d¢)?
Volume- element dV=pdpdddz dV =1r2sin6 dr db

d¢

XV
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UNIT -1
Differential Equations




Chapter 1

Basic Concepts of
Differential Equations

INTRODUCTION

Differential equations are of fundamental importance in engineering mathematics
because many physical laws and relations appear mathematically in the form of
such equations. The mathematical formulation of many problems in science,
engineering, Economics, sociology, physiology, Biology, Finance and
- management, give rise to differential equations. For example, the problem of
motion of a satellite, the flow of current in an electric circuit, the growth of a
population, the changes in price of commodities, decay of radioactive substance,
cooling of a body etc. lead to differential equations. Each of the above problems
are characterised by some laws which involve the rate of change of one or more
quantities, with respect to the other quantities. The laws characterising these
problems when expressed mathematically, become equations involving
derivatives and such equations are called differential equations.

DEFINITION

. Any relation between known functions and an unknown function is called a
differential equation if it involves the differential coefficient (or coefficients) of
the unknown function.

It is usual to denote the unknown function by y. Finding the unknown function is
called solving or integrating the differential equation. The solution or integral of
the differential equation is also called its primitive, because the differential
equation can be regarded as a relation derived from it.

Equations such as

0 0 -y L =xy Q

N

d’y
dx?

(id) p=
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&’y d’y ., dy
3L 4 2x? —L +3x —= -3y =x*+
(iii) X e X 2 X7 X
(IV) X%"'Y%-}-Z.Z_::XYZ
u __ %u

) o

. dy , 2 (dyY

=2 LA —_—

(vi) y=2x -ty [de

3)

4)

©)

(6)

Which involve differential coefficients are called the differential equations.

Differential equations which involve only one independent variable are called
ordinary differential equations. Equations (i) (ii), (iii) and (vi) are of this type.

Differential equations which involve two or more independent variables are
called partial differential equations. Equations (iv) and (v) are of this type

" The order of a differential Equation. The order of a differential equation is the

order of the highest derivative involving in the equation.

The Degree of a differential Equation. The degree of a differential equation is
the degree of the highest order derivative involving in the equation, When the

equation is free from radicals and fractional powers.

For example- The differential equations

% +xy=a

_d_z_z + Xd—y =2

dx? dx
3.\ 2

[—Z—ZJ - 6x* (%X) +e* =sinxy
X X

2 5 1/3
_(.i_X = 1 + (.d_y.)
dx? dx

1)

()

@)

(U.P.T.U. 2009)

@)



Basic Concepts of Differential Equations

The equation (1) is of the first order and first degree. Equation (2) is of second
order and first degree. Equation (3) is of third order and fourth degree. Equation
(4) is of second order and third degree

Formation of A Differential Equation

Example 1. Find the differential equation of the family of circles of radius r whose
centre lies on the x axis. (I.LA.S. 1993, 95, 96)

Solution. The equation of the circle with radius r and centre on x axis is
(x-a)’ +y” =1’ M
Differentiating (1) with respect to x, we get
dy
2(x-a)+2y == =0
(x-a)+2y &
Eliminating 'a' between (1) and (2), we get

dY2 2 _ .2
(de) ty' =r

2
or y? {[%) +1 } =r?

Which is the required differential equation.

Example 2. Find the differential equation of the family of parabolas with foci at
the origin and axis along the x-axis. (I.AS. 1994)

Solution. The equation of the parabolas with foci at the origin and axis along the
x axis is given by

2 2 x + 2a

x+2a=0
T
oY)
=)
y
P
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or x2 + y2 = x2 + 4ax + 4a?
or y2=4a (x + a) 1
Differentiating with respect to x, we get
dy
2y — =4
f dx 2
=y dy _ 2a 2
dx
Eliminating a between (1) and (2), we get
d 1 d
2 = 2 _y + — _y.
y Y dx X 2 y dx
dyY |, 4y
—_— + 2 —_ - = 0
or y (dx) *ax Y

which is the required differential equation.

Example 3. Determine the differential equation whose set of independent
solution is {ex, xex, x2 ex}

(U.P.T.U. 2002)

Solution. Here we have

y =Ciex+ Coxex+C3x2ex (1)
Differentiating both sides of (1) w.r.t "x" we get
y'=Cex+ Coxex+ Caex+ C3x2ex+ C3 2x ex
= y'=y+Cex+2Cxex
= y' -y=Crex+2Caxex (2
Again differentiating both sides, we get

y' -y =Cex+2Cxex+2Csex
= y'-y' =y -y+2Csex using (2)
= y' =2y +y=2C;5ex 3)
Again differentiating (3), we get

y"-2y"+y' =2Csex
= y"-2y"+y'=y"'-2y'+y using(3)



Basic Concepts of Differential Equations

= y|n_3yn+3yt_y=0

&y ,d% , ,dy
—5 -3 —=+3—=-y=0
dx? dx? ax 7

is the required differential equation

EXERCISE

1. Form the differential equation of simple harmonic motion given by
x = A cos (nt + a)
2
Ans. fd_z’f +n’x=0
dt

2. Obtains the differential equation of all circles of radius a and centre (h, k) and
hence prove that the radius of curvature of a circle at any point is constant.

oo [1+ (& -0 (494

or

2
3. Show that v= A +B is.asolutionofd—V s 2 dv =0
r dr* r dr
Cy , (dyY|_ dy
4. Show that Ax2 + By? = 1is the solutionof x <y — + (-——) =y —=
dx® dx dx

5. By eliminating the constants a and b obtain differential equation of which
Xy = aex + bex + x2 is a constant.

Objective Type of Questions

Each question possesses four alternative answers, but only one answer is correct
tick mark the correct one.

dy Y azy
1. Degree and order of the differential equation ,|2 T vg=|L are
dx dx?
respectively.
(a) order 2, degree 3 .(b) order 1, degree 3
(c) order 3, degree 2 (d) order 3, degree 1
Ans. (a)
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e
2. The degree of the differential equation |y + x [—-—X] = E% is given by
X

dx?
(a) 2 (b) 3 (©) 4 (d) 1
(R.AS.1993)
Ans. (c)
,74/3
d’y d*y
3. The order of the differential equation | 1 + 7 = o is given by
X X
(@) 1 (b) 2 © 3 (d) 4
(R.AS. 1993)
Ans. (c)
4. If x = A cos (mt - o) then the differential equation satisfying this relation is
dx 5 d?x 3
- =T1- b _ =
(@) it X (b) e o X
dZX _ 2 dx _ 2
(C) d—ti———-mx (d)a——mx
(LLA.S. 1993)

5. The equation y 3— = x represents a family of
X

(a) Circles (b) hyperbola
(c) parabolas (d) ellipses

(U.P.P.CS.1995)
Ans. (b)



Chapter 2

Differential Equations of First Order
and First Degree

INTRODUCTION
An equation of the form F (x, y, :—y) =0 in which x is the independent variable
X

and —gX appears with first degree is called a first order and first degree
X

differential equation. It can also be written in the form (—;{— =f(x,y) or in the

form Mdx + Ndy = 0, where M and N are functions of x and y. Generally, it is
difficult to solve the first order differential equations and in some cases they may
not possess any solution. There are certain standard types of first order, first
degree equations. In this chapter we shall discuss the methods of solving them..

VARIABLES SEPARABLE
~ If the equation is of the form f; (x) dx = f2 (y) dy then, its solution, by integration
is [f, (x)dx=[f, (y)dy +C
where C is an arbitrary constant.
Example 1. Solve dy . e* Y +x?e”
X

Solution. The given equation is

.d_)i =ex'y + x2 e'y

dx
or ey dy = (ex + x2) dx

3
Integrating, ey = ex + -)—(3— + ¢, where C is an arbitrary constant is the required

solution.

d) — 2 d) )
le 2. So —_—x L | = + L
Examp (4 lve (y X j a (y
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Solution. The given equation is

dy 2 dy
- - = + —
yox dx e dx
dy 2
or +x) L =(y-
(@+x) 5 =0-ay)
or dy ;= dx
y - ay a+x
or dy - = dx
y -ay a+tx
or dy _ dx
y(l-ay) x+a
a 1 dx . . .
or { + —] dy = , resolving into partial fractions.
l-ay y x+a

Integrating, [-log (1 - ay) + log y] = log (x + a) + log C

where C is an arbitrary constant

Y |-
log | ———|=log {C(x+a
or Og(l—ay) og {C (x + a)}
or y =C(x+a)
1-ay

or y = C(x + a) (1 - ay) is the required solution.

_ Example 2. Solve (x + y)? %X =a®
X

Solution. Letx +y =v
then from (1) on differentiating with respect to x, we have

1+ﬂ=é{
dx dx

dy dv
=127 _q
or dx (dx )

Substituting these values from (1) and (2) in the given equation, we get

10



Differential Equations of First Order and First Degree

v2 [QX —1] = a?

dx
dv
or vi == =a%+v?
dx
2
v
or T————-z—dv=dx
a“ +v
a2 +v? - a2
or ——2——5—dv=dx
a‘+v
a
or [1- 5 2]dv=dx
a“ +v
Integrating,
1 v
v-aZz—tan! |— | =x+cC
a a

where c is an arbitrary constant

or v-atanl(v/a)=x+c
or (x+y)-atan {(x +y)/a} =x+c, from (1)
or y-atanl{(x +y)/a}=C

Method of Solving Homogeneous Differential Equation
It is a differential equation of the form

dy _ ¢ (xy)

dx vy (xy) @)

where ¢ (x, y) and vy (x, y) are homogeneous functions of x and y at the same
degree, n (say)

Such equation can be solved by putting y = vx

Now the given differential equation is

dy _ o(xy) _ x" ¢(y/x)
dx  y(xy) x"y(y/x)

11
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_ /%) _
or dx v (/%) U " R

Substituting the values of y and 3}’ from, (1) and (2) in (3),

we have vV +x dv _ f(v)
dx
or X av _ f(v)-v
dx
dv dx
or ==
f(v)-v  x

The variables has now been separated and its solution is

= log x + ¢ where cis an arbitrary constant.

-[ f(v)~v
After integration v should be replaced by (y/x) to get the required solution.
Example 4. Solve x dy - y dx = 1/(x* +y?) dx

Solution. The given equation can be rewritten as

d
Yy
o (3% 88) uxn GV, puttingy = v
X
or Xél: (1+V2)
dx
dv dx

or —_—— =

Integrating, log {v + (Vv + 1)} = log x + log ¢, where c is an arbitrary constant
or {v + \J(v? + 1)} =Cx

or [y+,/(y2 +x2):|/x=Cx v vEy/x

12
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or y+J(y? +x?) = Cx?
Example 5. Solve (1 + ex/y) dx + e¥/y [1 - (x/y)] dy =0 (U.P.P.CS. 1999)

Solution. The given equation may be rewritten as

oX/Y (1 _ ij +(1 +eX/y) % =0
y dy

dv
or V(l-v)+(1+eY +yv—|=0
&' (L-v)+ e)(v ydyJ
utting x = or%=v+ g—‘i
or eV—veV+v+ve"+(1+eV)y(—iX=O
dy
or (v+e")+(l+e")yg—!=0
dy

(1+e") dv+—C—lX=0
v+e’ y

or

Integrating, log (v + ev) + log y = log C, when C is an arbitrary constant

or log {(v +ev) y}=log C

or (v+e)y=C

or |:—)£ +ex/y}y=C, putting v =x/y
y

or (x+yexy)=C

Equations Reducible to Homogeneous Form.

Consider the equation dy | ax*tby+C VY
dx a'x+by+C

where a:b #a':b'

If C and C' are both zero, the equation is homogenous and can be solved by the
method of homogeneous equation. If C and C' are not both zero, we change the
variables so that constant terms are no longer present, by the substitutions x = X
+handy =Y + k Where h and k are constants yet to be chosen. (2)

13
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~ From (2) dx = dX and dy = dY

andso(l)reducestog= a(X+h)+b(Y+k)+C
dX aI(X+h)+bI(Y+k)+CI

dY _  aX+DbY+ (ah+bk+c)

or — 3)
dX a'X+b'Y+(@h+bk+C)

Now, choose h and k such that
ah+bk+c=0andah+bk+c'=0 4)

dY _ aX+bY
dX aX+Db'Y
by the substitution Y = vX. Replacing X and Y in the solution so obtained by x-h
and y-k [from (3)] respectively

Then (3) reduces to , which is homogeneous and can be solved

We can get the required solution is terms of x and y, the original variables.
A Special Case When a:b = a":b'

In this case we cannot solve the equations given by (4) above and the differential
equation is of the form

dy _ ax+by+C

P )
dx kax+kby+C

In this case the differential equation is solve by putting

v =ax+by 6)
Differentiating both sides of (6) with respect to x, we get

.ﬂ:a-}-bﬂorﬂ:l(ﬂ_a)

dx dx dx b \dx

.. The equation (5) reduces to

1 (dv v+C dv b(v+C)
ol al= r =a+ ——=

b

T kv A kviC

The variables, are now separable, and we can determine v in terms of x.
Replacing v by ax + by in this solution, we can obtain the final solution.

Example 6. Solve (2x +y - 3) dy = (x + 2y - 3) dx

Solution. The given differential equation is dy x*2%-3 1)
dx 2x+y-3

14



Differential Equations of First Order and First Degree

puttingx=X+handy=Y +k (2)

the equation (1) reduce to &Y (X+rhr2(¥+k)-3
dX 2(X+h+(Y+k)-3

dY _ X+2Y+(h+2K-3)

or —
dX 2X+Y+(2h+K-3)

®)

Choose h and k such that

h+2k-3=0and2h+k-3=0 4
| Solving the equations (4) we haveh=1=k
S From(2)x=X+landy=Y+1

orX=x-landY=y-1 %)
Also (3) reduce to dy _ X+2Y
dX 2X+Y
putﬁngY:Vxlv-f-Xi‘i:Z(_j-_zy_X
dX 2X+vX
or v-FX-q‘i=1+2V
dX 2+v
dv 1+2v 1+2v-2v-v? 1-v?
or X-—= -y = =
dX 2+v 2+v 2+v
2+v dX
or —dv = —
1-v? X
1 1 3 1 dX
or = + — dv=—
21+v 2 1-v X

Integrating, % log (1+v)- % log (1 - v) =log X + log C,where C is an arbitrary

constant
or log [(—11-_*—‘,‘;5} = 2 log (CX) = log (CX)*
1+v 2
= (CX
or Ay (CX)

15
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or —————1+Y/k3 = C2x?
(1-Y/k)
or _X_iY_ =C2
X-Y)
or (x-1)+(y-1)3 =C? from (5)
{(x-1)-(y-1))
or xty-2 =2
(x-y)»

Example 7. Solve (2x + 2y +3)dy - (x +y+ 1) dx =0

Solution. The given equation is d— = ﬁ——}i}—
dx 2x+2y+3

(1)
putx+y+l=v
. Differentiating

dx dx dx dx

-1

Therefore (1) reduce to dv 1= —
dx 2v+1

dv 3v+1
or e

dx 2v+1
or Zv+1 dv =dx

3v+1
or —2— + ———l—— dv =dx

3 3(3@v+l)

Integrating, % v+ —;— log (3v + 1) = x + ¢, where C is an arbitrary constant

or 6v + log (3v + 1) =9x + C;, where C; = 9C
or 6(x+y+1)+logBx+3y+4)=9x+C
_or 6y - 3x + log (3x + 3y +4) = C; where C2=C; + 6

16
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Linear Differential Equations

A differential equation of the form % +Py=Q
X

where P and Q are constants or functions of x alone (and not of y) is called a

linear differential equation of the first order in'y

its integrating factor = efPdx

Multiplying both sides of (1) by this integrating factor (L.F.) and then integrating
we get

y. e = C+ [Q. /" dx, where Cis an arbitrary constant, is the complete
solution of (1)

Example 8. Solve %X + 2y tan x = sin x, given thaty =0 when x = /3.
X

(U.P.P.CS. 2003)
Solution. Here P = 2 tan x and Q = sin x

Integraﬁng factor = edex = ethanx dx
= g2log sec x

2
= !B (X" = o2y

Multiplying the given equation by sec2x, we get

© sec’x (g—y + 2y tan x) = sin x sec’x
X

d
or — (y sec’x) = sec x tan x
dx

Integrating both sides with respect to x, we get
y sec2x = C + | sec x tan x dx, where C is an arbitrary constant
or y sec? x = C + sec x 1)

itis given that whenx=n/3,y =0

- from (1) 0 x sec> = =C + sec %

T
3

17
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or 0=C+2 Sosec — =2

wiA

-, from (1) the required solution is

y sec? x = - 2 + sec x
or y = -2 cos?x + cos X
Example 9. Solve (1 + y2) dx + (x - etan”y) dy =0

(Bihar P.C.S. 2002, I.A.S. 2006)

Solution. The given equation can be written as

fd_’ﬁ X etan"y
dy 1+y* 1+y*

1
7dy
Therefore the integrating factor =e” ' "7

= etany

Multiplying both sides of (1) by the integrating factor and integrating, we have

1

tan™! ey tan~!
x.ea“y=C+I 5 xe ¥ dy
1+y
where C is an arbitrary costant
tan'y _ 2t - -1
or X e =C+ |e* dt, wheret=tan v
=C+ = e
-1 1 -1
or x.e“‘“y=C+Ee2tany

Example 10. Solve % +ycosx= —;— sin2x  (I.A.S. 2004)
X

" Solution. Here P=cos xand Q = % sin 2x = sin x cos x

-, Integrating factor = e/Pd = gfcos xdx — gsin x
Multiplying the given equation by the integrating factor esin x and integrating

with respect to x, we get

18
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y. e =C+ J-es“‘ * sin x cos x dx, where C is an arbitrary constant.

or y. e =C+ je‘ tdt, where t = sin x

=C+toet-et

=C+esinx (sinx - 1)
or y. e * = C+ e * (sin x - 1)
Equations Reducible to the Linear Form.

The equation
d n
Ty )
X

Where P and Q are constants or functions of x alone and n is a constant other
than zero or unity is called the extended form of linear equation or Bernoulli's
Equation.

This type of equation can be reduced to the linear form on dividing by y» and

putting — equaltov
o 1 dy 1
- Dividing (1) by y», we get — —= +P. T =Q 2)
y" dx y"T
Put — =voryn*l=v

Differentiating both sides with respect to x, get
(e y " L=
or —_—— e —

Making these substitutions in (2), we have
1 dv

(1-n) ?1§+PV=Q
or 9—!+P(1—n)v=Q(1—n)
dx

19
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which is linear in v and can be solve by method of linear differential equation.

Example 11. Solve ? +x sin 2y = x> cos’y (U.P.P.C.S.1994)
X
Solution. Dividing both sides of the given equation by cos?y
we get
sec? dy +x(2tany) = x>
dx
. dy dv

utting tany = v or sec’ y -~ = —
p gany r y dx  dx
the above equation reduces to g—‘-'- +2xv = x> O

X

which is a linear equation. whose integrating factor

2

= efo dx _ e*

Multiplying both sides of (1) by the integrating factor and integrating, we have

v.e¥ =C+ jx3 e dx, where Cis an arbitrary constant
or v.eX =C+ % X2 e 2x dx
1 t 2
=C+ 5 J.t.e dt, where t = x

=C+-;— (tet— J'et dt)

or e tany=C+%et(t—l) - v=tany
x? 1 x2 2

or e tany=C+—2-e x*-1)

or 2tany=2Ce"<2 +(x* -1)

20
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Example 2. Solve dz .,z logz= —%2— (log z)?
dx x X

(LAS. 2001, U.P.P.CS,, 1999)
Solution. Dividing both sides of the given equation by z (log z)?, we get
1 dz 1 1 1
4+ —

z(logz)* dx (log z) x «x

putting = - ———1——; dz _ él, the above equation reduces to
log z z (logz)® dx dx
dx  x  x?
dv 1 1 C et . . ,
* V" which is linear equation in v and whose integrating factor
X X X
1
- e' L e 108 % = olog x!
=1
X

o + —
g x (log z) 2x*

Example 13. Solve y sin 2x dx - (1 + y2 + cos?x) dy = 0

(L.A.S. 1996)
Solution. The given equation can be rewritten as
y sin 2x % -cos’x=1+y?
2
or sin 2x & _1 cos®x = 1+y @)
dy 'y D

putting ~cos2x = v or -2 cos x (-sinx) dx = dv

" or sin 2x dx = dv

21
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the equation (1) reduce to

= 2
dy 'y y @

Which is linear in v with y as independent variable
Ly
" Its integrating factor =e' ¥ =¢'%Y =y
Multiplying both sides of (2) by y and integrating, we get

vy=C+ I (1+y?) dy, where C is constant of integration

or -y cos?’x =C+y+ % y> o v=-cos’x
2 1.3
or y cos x+C+y+§y =0
Example 14. Solve x (dy/dx) + y = y2log x
(U.P.P.C.S. 1995)
Solution. The given equation can be written as
1 d 11_1
—2-d—y+—-=—1ogx )
y> dx xy x
putting - 1 v or —17 dy _dv in (1), we get
y* dx X
EIX—lv=llogx 2
dx x X

which is in the standand form of the linear equation and integrating factor

[laceeter g
e X

b
Multiplying both sides of (2) by the integrating factor and integrating, we get

v. 1. C+ J'—}2— log x dx where C is an arbitrary constant
X X

or Y-c+ J't e”' dt, putting t = log x
x

22
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or Yec+ [-t et + let dt}
X

=C-(t+1)et=C-(1+]logx)e-logx

or ——1—=C—(1+logx)[1J '.'v=--1—
y X y
or 1=(1+logx)y-Cxy

Example 15. Solve x (dy/dx) + y log y = x yex
(I.A.S. 2003, M.P.P.C.S. 1996)
Solution. Dividing both sides of the given equation by y, we get

x dy
.__.__+1 = x
S ot (ogy)=xe
1dy /1
or — ==+ = (1 =e*
v L logy)=e
putting v =1log y
or v _1 _(_1_)11 the above equation reduce to
dx y dx
dv 1
—_—t — = pX 1
dx xV ¢ @)

which is a linear equation in v

1
—dx
Its integrating factor = e'[ x =l X =

Multiplying both sides of (1) by the integrating factor x and integrating, we have

v.x=C+ '[x e* dx, where Cis an arbitrary constant

or v.x=C+xe"—Jl.e"dx

or (logy) x=C+ xex-ex
" Exact Differential Equations

A differential equation which can be obtained by direct differentiation of some
function of x and y is called exact differential equation, consider the equation

Mdx + Ndy = 0 is exact

23
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M _ N
dy  ox
where M and N are the functions of x and y.

Solution of a exact differential equation is

™M ax + [Ngy =cC
Regarding only those

yasa terms of N

constant not containing x

Example 16. Solve

{y (1+ 1) +Cosy} dx + (x +log x - x siny)dy =0
b

(L.A.S. 1993)
Solution. Here M =y (1 + 1) cosyand N=x+logx-xsiny
X
M _ (l + l) -siny and N =1+ 1 ~-siny
oy X ox X
= M QI\—I, hence the given equation is exact
oy  Ox
. 1

Regarding y as constant, J'de = I{y (1 + ;) + cos y} dx

=y j'(l+ 1) dx + cosy jdx

X
=y (x +log x) + (cos y) x (1)

Also no new term is obtained by integrating N with respect to y.
.. From (1), the required solution is
y (x + log x) + x cos x = C, where C is an arbitrary constant
Example 17. Verify that the equation
(x* - 2xy2 + y4) dx - (2x%y - 4xy? + sin y) dy = 0 is exact and solve it
(U.P.P.CS. 1996)
Solution. Here M = x# - 2xy2 + y4, N=-2x2y+4xy®-siny
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%}’M = -4xy + 4y* and %XN— = -4xy + 4y°

M. @, hence the given equation is exact
oy  ox
Regarding y as constant, J.de = I(x“ - 2xy? +y*) dx

XS

5
Integrating N with respect to y, we get

-x*y? +y*x (1)

I(-szy +4xy® -siny)dy = -x*y* +xy* +cosy
omitting from this the term -x2y?and xy* which are already occuring in (1) we get
cosy .
.. From (1) and (2) the required solution is
x° 2,2 2
= -xy  +y*x+cosy=C
where C is an arbitrary constant
Rules for finding integrating factor

A differential equation of the type Mdx + Ndy = 0 which is not exact can be made
exact by multiplying the equation by some function of x and y, which is called an
integrating factor.

A few methods (without proof) are given below for finding the integrating factor
in certain cases.

Method L. Integrating factor found by inspection.
In the case of some differential equation the integrating factor can be found by

. inspection. A few exact differentials are given below which would help students
(if they commit these to memory) in finding the integrating factors.

\ dy - v dx dx -xd
(@) d({;}l‘—y;-zl— (b) d(§]=z——}—,—2——y
2 2
(©) d(xy)=xdy +y dx @ d[";]iyx—diyzx—gl
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2 2xy dy - y* dx 2 2x%y dy - 2xy? dx
(e) d[{;—}——-——y = ® d Z—z]= R
@ d [tan" 3‘-} = yoxoxdy ® dfnt L)XYoy
y) Xty x) X+y
. 1 2 2)_xdx+ydy , 1) _ xdy+ydx
) d[Zlogp? +y?)]=22YY df-—|=Xyrydx
( ) (2 g ( Y ) X2 + y2 (]) Xy X2y2
(k) dlog (ij=————y dx - xdy O dlog (X)=—————X dy -y dx
y Xy X Xy
(m)d(i)=yexdx—exdy
y y*

Example 18. Solve (1 + xy) y dx + (1 - xy) xdy =0
(I.A.S. 1992, M.P.P.C.S. 1974)
Solution. The given eqution can be written as
(y dx +x dy) + (xy? dx - x%y dy) =0
or d (yx) + xy2dx -x2ydy =0
Dividing both sides of this equation by x2y2, we get

or izdz+ldx-ldy=0, where z = xy
z X y

Integrating, e log x - log y = C, where C is an arbitrary constant
z

or ——1-—+logx—logy=C, putting z = xy
Xy
1
or log (x/y)=C + —
Xy

Example 19. Solve (xy2 + 2x2y3) dx + (x2y - x3y?) dy = 0
(U.P.P.C.S.1993)

* Solution. The given equation can be rewritten as
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xy2 (1 + 2xy) dx + x2y (1 - xy) dy =0

or y (1+ 2xy)dx + x (1 -xy)dy =0
or (y dx + x dy) + 2xy2dx - x2y dy =0
or d (xy) + 2xy2dx - x2y dy = 0

Dividing both sides of this equation by x2y2, we get

d (xy) + Zdx—-l—dy=0
2yr X y

or (iz)dz‘*(Z/X)dx-(l/y)dy=0,wherez=xy
z

Integrating, - 1, 2log x - log y = C, where C is an arbitrary constant
z

o (M) +1o8 (<54 . pusing 2=y
o er (%4) =<+ k)

Example 20. Solve y sin 2x dx = (1 + y2 + cos?x) dy
(L.A.S. 1996)
Solution. The given equation can be written as
2y sin x cos x dx - cos2x dy = (1 +y?) dy
or -d[ycos2x] =(1+y?)dy

3
Integrating, -y cos’x =y + —}—;’— + C, where Cis an arbitrary constant.

Method II. In the differential equation Mdx + Ndy =0, f M =y f; (xy) and N = x

f2 (xy), then ———-1—N— is an integrating factor, Provided Mx - Ny # 0
y

Mx -

Example 21. Solve
(xy sin xy + cos xy) y dx + (xy sin xy ~ cos xy) xdy =0

(Bihar P.C.S. 2007, U.P.P.C.S. 1990, 94)

Solution. Integrating factor
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1
- (xy sin xy + cos xy) Xy - (xy sin Xy ~ cos xy) xy

_ 1
2yX COs Xy

Multiplying both sides of the given equation by this integrating factor, we get

% (tanxy+ xinydx+ —;— (tan xy-%)xdy=0

or (tanxy)(ydx+xdy)+ldx—ldy=0
X y
1 1
or (tanxy)d (xy) + —dx- —dy=0
X y
1 1
or tanz dz + — dx - — dy =0, where z = xy
X y

Integrating term by term, we get
log (sec z) + log x - log y = log C, where C is an arbitrary constant

or log {x secz} =logC
y

or X (secz)=C

or x sec (xy) = Cy

Method III In the differential equation Mdx + Ndy = 0 if _Il\_I [%YM- - %xﬁ] is a

f(x) d
function of x alone, say f(x), then the integrating factor is eI b dx

Example 22. solve (x2 + y2 +1) dx - 2xy dy = 0
(U.P.P.C.S. 1988, 82)
Solution. Here M =x2 + y2+ 1 and N = - 2xy
oM oM
Som— =2 and — =-2
Y nd = Y

oy
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Therefore, M N1 (2y +2y) = --g-, which is a function of x
N oy ©ox —-2xy X
alone. Hence method Ill is applicable

Here f(x) = -2/x

) J’ £(x) dx ~j'Z dx
.. Integrating factor =e =e X
= e—ZlOgX = 1/x2

Multiplying the given equation by this integrating factor 1/x2, we get

—12— (x2+y2+1) dx—lz-(ny)dy=0
x

X
y: 1
or 1+—2'+—2 dx—2—y-dy=0
x* X X
. 2
or [1+—1; dx + X-z—dx-z—y— dy | which is an exact
x“ X X
17 2
or [1+—2— dx+d[—y/)=0 using method I
x2 | P

Integrating term by term, we get

2
X - 1y K ] = C, where Cis constant of integration
X

or x2 -1 - y2 = Cx is the required solution.

Method IV. In the equation Mdx + Ndy =0

If Rl/l— (% - -%%J is a function of y alone, say f(y),

. [epa
then the integrating factor is e-[ o)y

Example 23. Solve (xy? +y) dx + 2 (x%y2 + x + y¥) dy =0
Solution. Here M = xy? + y and N = 2x2y2 + 2x + 2y*
oM

.'.—=2xy2+1,andgly—=4xy2+2
oy ox
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JL (N _aM)__ 1 z z
M (ax ayj 5 +y) {(4xy +2)-(3xy +1)}
1
= ——— (xy* +1)= =, which is a function of y alone
y (xy* +1) y
and equal to f(y) say.

1
fyydy= |59
Then integrating factor = eI () ey e'[y

=98y = y

Multiplying the given equation by integrating factor y we get
(xy* +y%) dx + (2x2 y> + 2xy + 2y%) dy = 0

which is an exact differential equation and solving by the method of exact, we
have

3x2y4 + 6xy? + 2y¢ = 6 C is the required solution.
Example 24. Solve (3x2 y4 + 2xy) dx + (2x3y3 - x2) dy = 0
(U.P.P.C.S. 2001)
Solution. Here M = 3x2y* + 2xy , N = 2x3 y3 - x2

and @ =12 xzy3 + 2x, %XI\—I = 6x2y3 - 2x

As M # %, so the equation is not exact in this form. Thus, we have to find

oy

the integrating factor by trial. In the present case, we see that

203 _ oy 194203 _
1[N _ @\‘ - &%y 3"4 12xy” = 2x =—z,is the function of y alone
M { ox ayJ 3x°y* + 2xy y

. : e
The integrating factoris e °V = —
y
Thus, the differential equation becomes
(Bx2y2+ 2x/y) dx + (2x3y -x2/y?) dy = 0

Which is an exact, as M _ 6x%y - 2x/y* = N
oy ox
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Its solution is
I(sz y? +2x/y)dx =0
or x3y2+x2/y=C

Where C is an arbitrary constant.

Method V. If the equation Mdx + N dy = 0 is homogeneous then

integrating factor, Provided Mx + Ny # 0
Example 25. Solve x2y dx - (x3+ y3) dy =0
Solution. Here M = x?%y and N = -x* - y°
5o Mx+ Ny =x3y - x3y -y =-y¢£0

-—1-¢0

.. Integrating factor = —— =
nteg g factor Mx + Ny y4

Multiplying the given equation by this integrating factor -1/y*4, we get

X2 x 1
-—;dx+[—7+—— dy =0

y y y
-x? x3 1
In this form of the equation, M= —- and N= — + =
y y y
M _ 3x2 ON _ 3x2
So—=—-and — = ——
&y vy x yt
oM _ON
3 ——— o o

ox
Hence this equation is an exact
Solving, we get
x3=3y3 (logy - C)

Mx + Ny

is an

Method V1. If the equation be of the form x2y® (my dx + nx dy) + xcy4 (py dx + qx

dy) =0

where a, b, ¢, d, m, n, p and q are constants, then the integrating factor is xhyk,
where h and k can be obtained by applying the condition that after multiplication

by xtyk the equation is exact.
y Xy q
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Example 26. Solve (y2 + 2x2y) dx + (2x3 - xy) dy = 0

or y(ydx-xdy)+2x2(ydx+xdy)=0 (U.P.P.C.S. 2000)

Solution. The given equation can be rewritten as
y(y+2x)dx+x(2x2-y)dy =0

which is of the form as given in method VI

. Let xhyk be an integrating factor

Multiplying the given equation by xhyk, we get (xk yk*2 + 2xh+2 yk+1) dx + (2xh+3
yk _xh"’l yk"’l) dy = O

Here M = xh yk+2 + 2xh+2yk+1and N = 2xh+3 yk —xh+1yk+1

c M 2y 2 (ko 1) 2y (1)
and %\I——Z(h+3)xh+2 -(h+1)x" y**? )
M _oN

If the equation (A) be exact we must have — = o

Or (k+2)xhyk+1+2(k+1)xh+2yk=_(h+1)xhyk+1+2(h+3)xh+2yk from
(1) and (2)

Equating coefficients of xh yk+1 and xh +2yk on both sides we getk + 2=~ (h + 1)
and 2(k+1)=2(h+3)

hence solving we get

-. The integrating factor = xh yk = x-5/2 y-1/2
Multiplying the given by x-5/2y-1/2, we get
(x-5/2y3/2 + 2x-1/2 y1/2) dx + (2x1/2y-1/2 =x-3/2 y1/2) dy = 0

In this form, we have — M. -(?E the equation is exact

oy ox’

.. Regarding y as constant

5
Ide = I(x 2 y3/2 4 212 y172) dx
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2
- 3 X2 32 4 4x172 y1/2

Also no new term is obtained by integrating N with respect to y, Hence the
required solution is

2
23 y3/2 + 45172 y1/2 =C

3
Where C is an arbitrary constant

EXERCISE

Solve the following differential equations
1. (x2-2x+2y?)dx+2xy (1+logx?)dy =0

(I.A.S.1991)
Ans. x2-4x+4y?logx+2y2=C

2. x* %X =x* +xy+y?
X
(U.P.P.C.S. 1998)

Ans. x=Ce®" G]

3. By+2x+4)dx-(4x+6y+5)dy=0 (U.P.P.C.S. 2001)
Ans. 14 (2x + 3y) -9 log (14x + 21y + 22) =49x + C
4. xy- % =y> e
(I.A.S. 1998)
Ans. ex=y2(x+ ()
5. Solve the initial value problem dy _ ——)—(—, y (0)=0
dx X%y +y’

(LA.S.1997)
Ans. (x2+y2+2)= 2e¥' /2

6. Show that the equation (4x + 3y + 1) dx + (3x + 2y + 1) dy = 0 represents a
family of hyperbolas having as asymptotes the linex+y =0,2x+y+1=0

(LA.S. 1998)
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7. The equations of motion of a particle are given by %’E +wy =0,

a wx =0, Find the path of the particle and so that it is a circle.

dt
(U.P.T.U. 2009)
Hint. y(t) = C1 cos wt + Cz sin wt

x(t) = Cz cos wt - C; sin wt
sox2+y2=C?+(C3=R?
Objective Type of Questions

Choose a correct answer from the four answers given in each of the following
questions:

1. The differential equation y dx + x dy = 0 represents a family of
(U.P.P.C.S. 1999)

(a) Circles (b) Ellipses
(c) Cycloids (d) Rectangular hyperbolas
Ans. (d)

2. The solution of (xy2+ 1) dx + (x2y + 1) dy = 0 is
(U.P.P.C.S. 1999)

(a) x2y2+2x2+2y2=C (b) x2y2+ x2+y2=C
(c) xy2+x+y=C (d) x2y2+2x+ 2y =C
Ans. (d)

3. The differential equation for the family of all tangents to the parabola y2 = 2x
(U.P.P.C.S.1999)

(@) 2x(yy+1=2yy (b)  2xy+1=2yy'
(c) 2y'+1=2yy' (d)  2(y)+x=2yy
Ans. (a)

4. The general solution of the differential equation (1 +x)ydx+ (1-y)xdy =20
is

(U.P.P.C.S. 2000)

(a) xy=Cex-y (b) x+y=Cew
(c) xy=Cer-x (d) x-y=Ce¥y
Ans. (¢)
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5. Anintegrating factor of the differential equation (1 + x2) % +2xy =cos x is
X

(U.P.P.C.S. 2000)

@ 1+ O
(© log (1<) @ -log(1+x)
Ans. (a)

6. If % =e?,y=0 when x = 5, then the value of x fory = 3 is
X

(U.P.P.C.S. 2000)

() (e8+9)/2 (b) e
(c) logeb (d) et+1
Ans. (a)
7. Thesolution of (x -1) dy =y dx, y (0) = -5 is
(@) y=5(x-1) b)  y=-5(c-1)
© y=5(x+1) @  y=-5(x+1)
Ans. (a)

8. The differential equation x dx - y dy = 0 represents a family of
(U.P.P.C.S. 2001)

(a) Circles (b) Ellipse
(c) rectangular hyperbolas (d) Cycloids
Ans. (c)

9. The solution of the differential equation (x + 2y) dy - (2x - y) dx = 01is
(U.P.P.C.S. 2001)

(@) x2+y2-2xy=C (b) xy +y2+x2=C
(c) x2+4xy +y2=C (d) xy +y2-x2=C
' Ans. (d)
10. In the differential equation Xdiy +my = e, if the integrating factor is xizl

then the value of m is
(@) 2 (b) -2
(© 1 (d) -1
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Ans. (b)

11. The solution of the variable separable equation (x2 + 1) (y2 - 1) dx + xy dy = 0
is

(I.A.S. 1988)
(@) y?-1=x2+1+C (b) log (y2-1)=Clog (x2+ 1)
(c) y2=1+C e'2 (d) none of these
X
Ans. (c)

12. The solution of the differential equation j—y ="V +x? eV is
X

(M.P.P.C.S. 1991, R.A.S. 1993, U.P.P.C.S. 1995)

(a) eY=ex+—;:x3+C (b) eY=e'x+§-x3+C
(c) ev=ex+x3+C (d) e'y=%x3+e"+C
Ans. (a)
13 If —1\1;1- (%IXE - %VIJ =f(y) a function of y alone, then the integrating factor of

Mdx + Ndy =0is
(M.P.P.C.S. 1991, 93)

(@) e-If(y) dy (b) J ) dy
© ) [e™dy @ [ fy)dy
Ans. (b)

14. The solution of the differential equation (x + y)? 3—2 = a? is given by
X

(I.A.S. 1994)
(@) y+x=atan(y;c) (b) (y-x)=atan(y-c)
= y-¢ ) = y-¢
() y-x= tan( " ) (d) a(y-x) tan( " )
Ans. (a)
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15. Pdx + x siny dy = 0 is exact, then P can be
(MP.P.P.C.S. 1994)

(a) siny +cosy (b) -siny
() x2-cosy (d) cosy
Ans. (c)
16. The solution of the differential equation (x - y2) dx + 2xy dy = 0 is
(I.A.S. 1993)
(a) yeyz/" =A (b) xeV /X = A
© vy eV =A (d) xeV =A
17. The solution of the equation SR 2xy = 2xy’ is
dx
(I.A.S. 1994)
cx 1
a) y= b =
@ y= =75 O
1 cx
© y= —— @ - =
l1+ce l1+e
Ans. (c)

18. The homogeneous differential equation
M y)dx+N(x,y)dy=0

can be reduced to a differential equation in which the variables are separable, by
the substitution-

(I.A.S. 1996)
“(a) y=vx (b) Xy =v
() x+y=v (d) X-y=v
Ans. (a)
19. The solution of the differential equation
gy_ + ¥ = x2
dx x
Under the condition thaty =1, whenx =1 is
(LA.S. 1996)

(a) xy=x3+3 (b)  Axy=yi+3
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(c) 4xy =x4+3 (d) dxy =y3+3
Ans. (c)

20. The necessary condition to exact the differential equation Mdx + Ndy = 0 will
be
(MP.P.C.S. 1993, R.A.S. 1995)

@ -2 » -=
gy O ox oy
M &N M N

(0 P = 6y2 (d) 6y2 = P

21. If I, I2 are integrating factors of the equations xy' + 2y =1 and xy' - 2y =1
then

(M.P.P.C.S. 1994)
(@ hLi=-h (b) LI=x
. (C) L=x2I (d) LhI=1
Ans. (d)
22. The family of conic represented by the solution of the differential equation
(4x+3y +1)dx+(Bx+2y+1)dy =0is

(U.P.P.C.S.1994)

(a) Circles (b) Parabolas
(c) hyperbolas (d) ellipse
Ans. (c)
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Chapter 3

Linear Differential Equations with
Constant Coefficients and
Applications

INTRODUCTION
A differential equation is of the form
dn y dn - ly dn - 2y
+a +a F o tay= 1
dx* D dxTl P k2 AR M

where aj, ay,.......an are constants and Q is a function of x only, is called a linear
differential equation of nth order. Such equations are most important in the study
of electro-mechanical vibrations and other engineering problems.

The operator 4 is denoted by D.

dx
= Dy +ai Dy + ... +any = Q
or f(D)y=Q
~where f(D)=Dr+ a1 D1+ ..., +an

Solution of the Differential Equation

If the given equation is

n n-1 n-2
o +a, 3x" _}1’ +a, gx“ _Z L +a,y =0 e))
or (Dr+a; Dr-1+a;Dr-2+ .. +an)y =0 (2
Let y =emx
= Dy=mremx,1<r<n
-. Then from equation (2)
mr+aymt-l+amr-2+ ... +an) e =0

y = em js a solution of (1), if
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mt+a;mi-l+ami-2+.......... +an=
This equation is called the auxiliary equation.
Case 1. When Auxiliary Equation has Distinct and real Roots

Let my, m2, oo, my are distinct roots of the auxiliary equation, then the
general solution of (1)is y =C; e™* + C, e™* + ............... +C, e™*
where Cj, Ca,............ Chare arbitrary constants

Illustration. Solve the differential equation
2

g-x—}z, +3 % -54y=0
Solution. The given equation is

(D2+3D-54)y=0
Here auxiliary equation is

m2+3m-54=0
or (m+9)(m-6)=0
= m=6,-9
Hence the general solution of the given differential equation is y = Cieéx+ Cz &%

Case II. When Auxiliary Equation has real and some equal roots.

If the auxiliary equation has two roots equal, say m; = m, and others are distinct
say m3, My,............ my. In this Case the general solution of the equation (1) is

y=(C1+Cax) e™* +C, e™ +............. +C e™>

where C;, C, Ca.......oee. Chn are arbitrary constants

Illustration. Solve the differential equation
(D4-D3-9D2-11D-4)y=0

Solution. The auxiliary equation of the give equation is

mt-m3-9m?2-1lm-4=0

or (m+1P(m-4)=0

= m=-1,-1,-1,4

Hence, the required solution is
y=(Ci1+Cx+Cx2)ex+ Cpexx
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or y=(Cix2+ Cox+ C3) ex + Cy e
Case III. When the auxiliary equation has imaginary roots

If there are one pair of imaginary roots say m; = o + i, mo= o - ip i.e. o * i} say
then the required solution is

ex (Real pary) [ {cos (imaginary part) x} + Cz {sin (imaginary part) x}]
ie. ™ [C1 cos Bx + Cz sin Bx]

or y =C1 e**cos (Bx + C2)

Ilustration. Solve (D2 - 2D +5)y =0

Solution. Here the auxiliary equation is

m2-2m+5=90

or m=%|:2:t,/(4—20)]=11:2i

.. The required solution is
y = ex (C1 cos 2x + C sin 2x)
Particular Integral (P.1.)

when the equation is

or f(D)y=Q

The general solution of f (D) y = Q is equal to the sum of the general solution of
f (D) y = 0 called complementary function (C.F.) and any particular integral of the
equation f(D) y = Q

.. General solution = C.F. + P.I.

A particular integral of the differential equation

f(D) y = Qis given by f(—l—D—)- Q

Methods of finding Particular integral
(A)
Case L. P.I, when Q is of the form of e2x, where a is any constant and f(a) # 0

we know that D (ex) = a ex
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D2 (eax) == a2 eax
D3 (eax) = g3 pax
In general Dr (eax) = an eax

- £(D) (e) = f(a) ex

1 pyem = L f@)e™

£(D) £ (D)
. or eax = f(a) f(]lj) e - f(a) is constant
1 ax 1 ax
—e¥=——e
f(a) f(D)

Hence P.I. = 1 e = L e™, iff(a)#0
f(D) f(a)

Case II. P.I.,, when Q is of the form of e2x, and f(a) = 0

Then L (ex) = e
f(D) f(D+a)

1, which shows that if e2x is brought to the left
from the right of ﬁ , then D should be replaced by (D + a)

Another method for Exceptional Case

If f(a) = 0, then

PlL=—¢¥™=x 1 e™
f (D) f' (D)

ax

=x ——, iff (a) %0

f' (@)’
If f (a) =0, then
PL=—— ™
£(D)

=x? f“e(a) , iff' (@)=0

Example 1. Solve (D2 - 2D + 5) y = e
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Solution. Here auxiliary equation is m2 - 2m + 5 = 0, whose roots are
m=-1+2i
- CF. =ex[C; cos 2x + C2 sin 2x], where C; and C; are arbitrary constants
1 -
D?-2D+5
= 1 e_x
(-1 -2(-1)+5
1

=_e'x

8
.. The required solutionisy = CF. + P.I.

and Pl =

- herea= -1

i.e.y =ex*(Cscos 2x + Cz sin 2x) + % e

!
Example 2. Solve (D - 1)2(D2 + 1)2y = ex

" Solution. Here the auxiliary equation is
(m-12(m2+1)2=0

or m=1,1,4%i, i

L CE=(C+Cyx)ex+ (Csx + Cy) cos x + (Csx + Cg) sinx

where c's are arbitrary constant

1 x

and Pl = e
(D -1 (D? + 1)

_ 1 1 .
(D-17 (1% +1)

1 1,
(D-1)* (2)°

1 — €
(D-1) 4

oy

X

x_ 1 1
(D+1-1)? 4
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D 4 4 D? 4 2 8
- The required solutionisy = C. F + P.L.
or y=(C1x+Cz)e’<+(C3x+C4)cosx+(Csx+C6)sinx-l~%x2ex

Example 3. Solve (D + 2) (D - 13y = ex

Solution. Here the auxiliary equation is
(m+2)(m-1y=0

or m = -2 and m =1 (thrice)

Therefore C. F = C; e-2x + (C2 x2 + C3 x + Cy) ex, where C;, C; and Cs are constants
and

1 x
L= e
(D +2)(D-1)
-1
(1+2)(D-1)
1 1 <1 1
== == ———— 1
3 (D-1) 37 {(D+1)-1)
=_1_ex_1_1
3 D
3 6 18

.. the required solutionisy = C.F + P.I
or y=C1e-2x+(sz2+C3x+C4)ex+i}s—x3ex

(B) (i) P.I. when Q is of the form sin ax or cos ax and f (-a?) # 0

12 sin ax = 12 sinax, if f (-a) = 0
f(D) f (-a%)

& 1 cos ax = 1 5 cos ax, if f (-a®) # 0
(D7) f(-a%)

(ii) P.I. when Q is of the form sin ax or cos ax and f (~a?) =0
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Let f(D) = D2+ a2and Q = sin ax

Then Pl =

= ——— gin ax
D? +a?

= i (Imaginary part of ™)
a

= Imaginary part of 1 g
gnary p D? + a2
1

=1.P. ofeiax PP S v 1
{(D +ia)° +a}

1
(D? + 2iaD + i%a? + a?)

= LP. of e

1

=IP.ofe® — ——
2iaD [1 + 29_}

=LP.of — (-i) (i cos ax - sin ax)
a

1 x
=~ — — COS ax
2 a

. X
—1-)7—-——2- smax=—2— COS ax
+a a

Now if f(D) = D2 + a2 and Q = cos ax

Then P.I = DTIJ? cos ax = —-——1—az (Real part of e

1ax
D? + )
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= Real part (or R.P.) of Dz—ia? e™

=R.P. of 1 (EJ (i cos ax - sin ax)
2 \a

X .
= — sin ax
2a

s ——— cOSax = — sin ax
D? +a? 2a
Example 4. Solve (D2 + D + 1) y = sin 2x

Solution. Here the auxiliary equationism2+m+1=0

which gives m = - —;— ti (% \/C;]

o CE =ex/2 {Cl cos G— X \/5) +C, sin (-;— xﬁ)}
where C; and C; are arbitrary constants

and PI.= —2———1-—-—— sin 2x
D“+D+1

sin 2x replacing D2 by - 22

=5 sin 2x
1 .
= Wﬁ:?) (D + 3) sin 2x
- D21_9 (D+3)sin2x= —— (D+3)sin2x

= ——1— (D +3) sin 2x = ——1 [D (sin 2x) + 3 sin 2x]
13 13

= ——115 [2 cos 2x + 3 sin 2x] Since D means differentiation with respect to x

.. The complete solution is
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y=e*/? [Cl cos (% x\/g) +C, sin (% x«/f’;):| —1—13 (2 cos 2x + 3sin 2x)

Example 5. Solve (D2 - 5 D+ 6) y = sin 3x

Solution. Its auxiliary equation is m2 - 5m + 6 = 0 which gives
m=23

- CF. = C e + Cy 3, where G and C; are arbitrary constants

and Pl = —2———1——— sin 3x
D -5D+6
1
= — —  sin 3x, replacing D? by -32
-32-5D+6 placing Y
) -1 .
= e gin3x = (5D—3) sin 3x
-(5D + 3) (5D +3) (5D - 3)
-1 (5D-3)sin3x
(25D° -9)
-1

= {75—(—_32—)—3}‘ (5D - 3) sin 3x

= 52—4 [5D (sin 3x) - 3sin 3x]

-1 [5 % 3 cos 3x - 3 sin 3x]
234

-1 (5 cos 3x - sin 3x)
Hence the required solution is
y=Cirex+ Cre¥ + —718_ (5 cos 3x - sin 3x)

. Example 6. Solve (D3 + D2-D - 1) y = cos 2x
Solution. Its auxiliary equationism3+ m2-m-1=0
or (m2-1)(m+1)=0
or m=1,-1,-1

o CF. =Cex+ (C2x + C3) ex, where C;, C2and C; are arbitrary constants
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1

and Pl = 3 5 cos 2x

D°+D“-D-1

= 5 12 cos 2x
D{D*)+D“-D-1

= 5 1 5 c052x=--1- 1 cos 2x
D (-2*)+(-2%)-D-1 5 D+1
1 D-1

= s 2x

- ——————— (O
5 (D-1)(D+1)
1 1 1 1

=-— ——— (D-1)cos 2x = - = ———— [D (cos 2x) - cos 2x
5pro1 07D 5(-22-1)[ ( ) ]
1 .
= — (-2 sin 2x - cos 2x)
25
Therefore the complete solution is
y=CF.+PL
or y=C1eX+(sz+C3)e-X——§§(2sin2x+c052x)

Example 7. Solve (D2 - 4D + 4) y = sin 2x, given thaty = 1/8 and Dy = 4 when x =

0. Find also the value of y when x = n/4. (Here D= di)
X

Solution. Its auxiliary equationism2-4m+4=0orm=2,2
- CF. = (G x + C) e, where C; and Cz are arbitrary constants

and P.I = 1 sin 2x = 1 in 2x

(N —— -} |
D?-4D +4 (-2 -4D + 4)
. 1 ¢. 1
=-— — sin2x=-— |sin 2x dx = = cos 2x
4 8
.. The solution of the given equation is

y=CF.+PL=(Cyx+Cy) e + % cos2x (1)

Dy = Cj €2 + 2 (C1 x + C) e -:11- sin 2
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or Dy=(2C,; x+2C, +C;) e -:11- sin 2x

According to the problem y = —;- and Dy = 4 when

x =0, so from (1) and (2) we get
1

= =G, e°+lcoso=C2+-1—orC2=0
8 8 8

And4=(2C;+4)eo= :11- sino=Cy -+ C2=0

or C=4
Substituting these values of Cy, C2 in (1) we get

y=4xex+ -;— cos 2x

whenx=mn/4, y = 4(2) e™/? + -;- cos (n/2) = me™/?

Example 8. Solve (D3 + a2’D) y = sin ax
Solution. Here the auxiliary equation is
m3+a2m=0orm=0,tai
s CF. = C1 + C; cos ax + Cs sin ax, where C;, C; and C; are arbitrary constants
and

Pl sin ax = ——1———2—D— (Imaginary part of &)

"D’ +aD D’ +a

1 .
= LP. of ———— e
© D3 +a’D €
= LP. of & 5 1 5 1
(D +ia)’ +a° (D +ia)
1 1
D? +3iaD? - 2a°D
1
-2a’D [1 “3ip. —17 DZ}
2a 2a

= LP. of e'®

= LP. of e®
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iax . -1
=1Pof S L 1—2D-——1-2-D2) 1
-2a®> D 2a 2a

iax . -1
~1P.of £ L 1-21)-—1-2-1)2) 1
-2a®> D 2a 2a

—tPof S Lf1+3py . )(1)
-2a®> D 2a
eiax 1 eiax

=LP. of — (D) =1LP.of X
-2a® D @) -2a° ()

(2]

=-| — | x sinax

2a®

.. The required solutionisy = C.F + P.I

. X
or y = C1 + Cacos ax + C3 sin ax "o sin ax
a

d*y
Example 9. Solve i m*y = sin mx
X

(LA.S. 1991)

d4
Solution. We have a——i—’ - m*y = sin mx
X

or (D4-m¥)y=sinmx, D= %
Here the auxiliary equation is

Mi-m¢=0
= (M2-m?) (M2+m?) =0

~M=-m,m,+mi
Therefore, C1 F = Ciem™ + Cp e-mx + C3 cos mx + Cy sin mx
where C;, C;, Csand Cq are arbitrary constants

1

1
Pl.= ——— sinmx= sin mx
D* - m? (D? - m?) (D? + m?)
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1

1
D? + m? {-—mz -m?

. (D2 +m2) {DZ _m2
= 1 sin mx) = - 1
. D? + m? 2m? 2m? \D? + m?

[ oo -
e | ~——— cosmx | =
2m? 2m

2

sin mx} = sin mx} replacing D? by -m

sin mxj

5 COs mX
4m

B sin ax = - Z—Xa cos ax, if f(-a®) = 0

Hence the required solutionis y = C.F + P.I

ory=Cem™+ Cem+ C; cos mx + Cg sinmx + cos mx

4m?>

3 2
Example 10. Solve % - %% + 4 % - 2y =e* + cos x

(I.A.S.1999, U.P.T.U. 2001, 2006)
Solution. The given can be rewritten as

(D3-3D2+4D-2)y=ex+cosx, D = ;—-
X
Here the auxiliary equation is
m3-3m2+4m-2=0
= (m-1)(mM2-2m+2)=0
iem=11%xi

- CF. = Gex + e (G2 cos x + G5 sin x), where C;, C; and Cs are arbitrary
constants.
1

&Pl = e* + cos x
D3—3D2+4D-2( )
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= L e* + 1 C
(D-1)(D*-2D+2) D*-3D*+4D-2

0S X

-1 { L e"}+ ! €os X
(D-1) (1-2+2 (-1 D-3(-1%) +4D -2

= 1 ex+
- D-1 3D +1
< 1 ,,(D-1)
(D +1)-1 9D? -1
« 1 3D-1

=e —.1+—-——2——cosx
D 9(-17)-1

COSs X

COs X

=xe* —11—0 (3D - 1) cos x

=xe* - -11—0 (3D cos x - cos x)
x_ 1 :

=xe’ -5 (-3 sin x - cos x)

=xe* + % (3 sin x + cos x)

Hence, the required solution is y = C.F + P.I

y=Crex+ex(Cocosx + Casinx) + xex + 1—10— (3 sinx + cos x)

(C) Tofind P.I. when Q is of the form xm
In this case P.I=

1 . s .
£ D) xm, where m is a positive integer
To evaluate this we take common the lowest degree from f(D), so that the
remaining factor reduces to the form [1 + F (D)] or [1 - F (D)]. Now take this
factor in the numerator with a negative index and expand it by Binomial theorem
in powers of D upto the term Dm, (Since other higher derivatives of x™ will be
zero) and operate upon x™. The following examples will illustrate the method.
2
Example 11. Solve é_gi + dy
dx dx
Solution. The given equation can be written as
(D2+D-6)y =x
Its auxiliary equationism?+ m-6=0orm =2, -3

- CF. = Cy e + Cy e-3, where Cy and C; are arbitrary constants

-6y =x

52



Linear Differential Equations with Constant Coefficients and Applications

and 3 - 1 X

> X
D*+D-6 -6(1—1D—1D2j
6 6

-1
--;- [1——2—(D+D2)} X

i

il

-—1—[1+—1—(D+D2)+ .............. :}x
6 6

...;1_ (x-{— }.J:i(6x+1)
6 6 36

.. The required solutionis y = C.F + P.I

y = Cy e + Cre-dx -glg (6x + 1)

Example 12. Solve (D3 - D2-6D)y =x2+ 1 Where D = —5—
X

(Bihar P.C.S. 1993)
Solution. Here the auxiliary equation is m3- m2 - ém =0

or m(m2-m-6)=0
or m(m-3)(m+2)=0
or m=0,3,-2
LG F=Cretx+ Credx+ Cyex
or CF.=C1+ Gy e¥ + Cz e, where C;, C; and C; are arbitrary constants.
- 1 2
and P.L O D% =D (x*+1)
1

1
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=_..1_ (1+x2__1.x+_7-j
6D 3 18

=—1 J(1+x2——)£+lex '.'D—:-i
6 3 18 dx

3 3 2
=_l X + ..).(_ - l X2 + 1 X =_l § X + 5__ - x_
6 3 6 18 6 |18 3 6

.. The required solutionisy = C.F. + P.L

25 X X
=C,+C, e +C e - x- —+ —
o R T R TR
2
Example 13. Solve d—Z -2 dy +2y=x+e" cos x
dx dx

(U.P.T.U. 2002)
Solution. Given differential equation is

(D2-2D +2)y =x+excos x
Here the auxiliary equation is
m?-2m+2=0=>m=1z=i
- C.F =ex (G cos x + C; sin x), where C; and C; are arbitrary constants,

and Pl = -—ZL—— (x + e cos x)
D?-2D+2
1 x
= X+ e” COS X
D?-2D+2 D2—2D+2( )
_ 1 . 1

3 X+e 3 COS X
2[1_D+1_32_} {(D+1) -2(D+1)+2}

[1—D+ —Dz—z—)_ (x) +e*

2
1+D-2 4. (x) +e* = sinx
2 2

5741 cos x Here f (-a2) =0

X

sin x

{x+D(x)—%D2 (x)}+ xe

x e*

I

N= N= N = N =

(x+1)+ sin x

.. The required solutions y = C.F + P.I
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ory =e*(Cicos x+ Cysinx) + % (x+1)+

Example 15. Find the complete solution of
d*y

-
Solution. The given differential equation is

(D2-3D +2)y = xe¥ + sin 2x

39-X+2y=xe3" + sin 2x
dx

Here the auxilliary equation is

m2-3m+2=0=>(m-1)(m-2

X

Xe

sin X

(U.P.T.U. 2003)

)=0=>m=1,2

o CF=C ex+ C e, where C; and C; being arbitrary constants

1

& PlL=——
D? -3D +2

(xe*™ +s

_
D?-3D+2

1
-3D+2

SX) +

(xe
1

D2

in 2x)

(sin 2x)
1

X) *
(D+3) -3(D+3)+2 6o =
1
+
D* +3D+2 )
3x}_ 1
2

3x sin

-3D -2

|
J -

1+2p+ 22
2 2

2
1+_?19+2_.
2

2

3x 3D

It
N | et
o

3x

N | =

55

9D? -4

in 2
22 -3D+2 (sin 2)

2x

1 .
(X) - (3—[)—;?) (sm 2)()

-2 (sin 2x)

(3D -

52—2—2—%)—— (sin 2x) replacing D2 by-22
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e (x - é) + L (3D sin 2x - 2 sin 2x)
2) 40

1
2
1 e* (x— 31+ L (6 cos 2x - 2 sin 2x)
2 2 40

= e (5 - Ej L (3 cos 2x - sin 2x)
2 4 20
Hence the required solutionis y = C.F + P.I
x 3

ory=Cjex+ Crex +eX (2 ZJ + 516 (3 cos 2x - sin 2x)

Example 16. A body executes damped forced vibrations given by the equation.

2
g—TX + 2k X = oM sinwe

dt dt

Solve the equation for both the cases, when w2 b2 - k2 and w2 = b2 - k2

[U.P.T.U. 2001, 03, 04 (C.O) 2005]

2 ‘
Solution. We have d—; + 2k dx b®x = e sin wt
dt dt

or (D2 + 2k D + b?) x = ekt sin wt

Here the auxiliary equation is m2 + 2km + b2 =0

= m = -k £ i/(b? - k?)

" Case 1. When w2 # b2 - k2

C.F=e*[Cicos (b® - k?) t+Casin /(b -k?) 1]

where C; and C; are arbitrary constants

1 Kt s
&Pl= - (e sinwt
D? + 2kD + b? ( )
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=gk 5 1 = (sin wt)
(D-k)+2k(D-k)+b
1 1
=k (sinwt)=e™ ————  sinwt
D2+(b2_k2)(1 ) W2 +(b2_k2)
K gin wt

T oKW
Here, complete solutionisy = C.F + P.I

or y=e® [C cos (b? - K2) t+ C, sin (b - kz)t:‘ ' sin wt

b2 K2 - w2

Case 2. When w2 = b2 - k2
C.F. = e (Cy cos wt + Cz sin wt)

1 Kkt

& Pl = —————— (™ sinwt
D? + 2kD + b? ( )
=gk 5 1 = sin wt
(D-K?+2k(D-K) +b
—e® 1 inwt Heref (-a?) =0
D2 + b2 _ k2
=gk (-——L cos wt)
2w
-kt
=- cos wt
w

Hence, the required solutionisy = C.F + P.I
or y = ekt (C; cos wt + Cz sin wt) _Et— e cos wt
w

Example 17. Solve (D2~ 2D + 1) y = x eX sin x
(Bihar P.C.S., 1997; 2007,U.P.P.C.S., 2001; L.D.A. 1995, U.P.T.U. 2005)

Solution. Here the auxiliary equation is
-2m+1=0=>m-12=0..m=1,1
- CF. =(C; + C2 x) ex where C; and C; are arbitrary constants

and Pl = -2—1—— xe* sin x
D -2D+1
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=e" ! (x sin x)
(D+1 -2(D+1)+1
x 1

3 X
D°+1+2D-2D-2+1

sinx
=e é (x sin x)

=e 1 x sin x dx = e* 1 [-x cos x + sin x]
D D

=e* [~ 'fx cos x dx + Isin x dx]
= e* [-x sin x - cos x - cos Xx]
=-e* (x sin x + 2 cos X)

Hence, the required solutionisy = CF + P.I

y = (C1 + Cax) ex - ex (x sin x + 2 cos x)

Example 18. Find the complete solution of the differential equation

2
% - 2_31 +y=xe* cosx (U.P.T.U. 2009)
X X

Solution. Here the auxiliary equation is
m2-2m+1=0=>(m-1p2=0; . m=1,1

L CE =G +Cx)ex

and PlL= ——2—1——— x e cos x
D -2D+1

=e* —1—)1—2— (x cos x)

= ex (-x cos X + 2 sin x)
Therefore, complete solution is y =C.F + P.I
or y = (C1 + C2x) ex + ex (2 sin x ~ X €OS X)
Example 19. Solve (D4 + 6D3 + 11D2 + 6D) y = 20 e-2*sin x
[U.P.T.U. (C.O.) 2005]
Solution. Here the auxiliary equation is
m#+6m3+11m2+ 6m =0

= m (m3 + 6m2+ 11m + 6) = 0
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= m(m+1)(m+2)(m+3)=0
.m=0-1,-2-3
LCFE =Ci+CGex+Ciex+ Cye
& Pl= 3 1 5 20 7% sin »
D* +6D° + 11 D? + 6D
=20e > 1 3 1 5 sin x
(D-2)* +6(D-2P +11(D-2) +6(D-2)
=20e* 1 3 sin x
(D-2)(D° -D)
=20 1 5 sin x
(D-2){(D)" D-D}
=20e* 1 > sinx replacing D2 by - 12
(D-2){(-1)" D-D}
=20e % _ sin x
(D-2)(-D-D)
2% 1 ) 2 1 )
=20e —_— sinx=20e ————— sinx
4D - 2D 4D -2 (-1)
=20 e sin x
4D + 2
~10e2 21)2— 1 sin x = 10 2% (2 cos x - sin x)
4D? -1 4(-1)-1

=2 e2 (sin x - 2 cos x)
Hence, Complete solutionisy = C.F + P.I

y=GC + Crex+ Cye2+ Cye3 + 2e2(sin x - 2¢0s X)
Example 20. Solve (D2 -4D -5)y =e*+3cos (4x+3) D = gd-
X

(U.P.T.U. 2008)
Solution. We have (D2 - 4D - 5) y = e + 3 cos (4x + 3)
Here the auxiliary equation is
m2-4m-5=0=>(m-5(m+1)=0..m=5,-1
CFE=Ce>+Cex
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1

& PL=—"—— {e¥ +3cos (4x +3
D" ~4D-5 | (b3

— 1 2x 1 . .
= ———— e +3 ————— {cos4x cos 3 - sin 4x sin 3}

D° -4D -5 D° -4D -5
— 1 2x 1 . 1 .
= +3cos3—2——————cos4x—35m3—2—-—sm4x

(2" -4(2 -5 D°-4D-5 D° -4D -5
=—l e +3cos 3 ——2—}——— cos4dx ~3sin3 ——2—1——— sin 4x

9 -4 -4D -5 -4 -4D -5
-1 e? +3cos 3 1 cos 4x - 3sin3 1 sin 4x

9 -16-4D-5 ~-16-4D -5
=—le2"+3cos3———1——~cos4x+3si113 1 sin 4x

9 -(4D + 21) 2
-1 e* -3 ¢cos 3 @2—_—2—1)~ cos4dx + 3 sin3 ﬁr%a— sin 4x

9 (6D -44) 16 D° - 441
= —lezx —3c053—ﬂ2—_—@—cos4x+3sin3——4-2%———sin4x

4(4°)-441 16(—4°)441

_ 1 62 _3 cos 3 (-16 sin 4x ~ 21 cos 4x) +3sin3 16 cos 4x - 21 sin 4x

9 -697 -697

1 o 3 . 3sin3 .
=-— e - —— cos 3 (16 sin 4x + 21 cos 4x) - (16 cos 4x - 21 sin 4x)

9 697 697
= —% e - 6—3— [16 sin 4x cos 3 + 21 cos 4x cos 3 + 16 cos 4x sin 3 - 21 sin 4x sin 3]

- e % [16 sin (4x + 3) + 21 cos (4x + 3)]

Hence the required solutionis y = C.F + P.I

ory=Ce*+ Crex —% e?* - 327 [16 sin (4x + 3) + 21 cos (4x + 3)]

2
Example 21. Solve %—}2: +2 gl +10y +37sin3x=0,and find the value of y
X X

when x = n/2, if itis given that y = 3 and j—y =0 whenx =0 (L.A.S. 1996)
X

Solution. The given equation can be written as
(D2 + 2D + 10) y = -37 sin 3x

ts auxiliary equation is m2 + 2m + 10 = 0, which gives
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m=% [-2¢,/(4-40)] =-1+3i

CF. =ex[C cos 3x + C; sin 3x], where C; & C; are arbitrary constants,

and Pl = —2——1————— (-37 sin 3x)

D +2D+10

=-37 —2—1—— sin 3x
D +2D+10

=-37 __r sin 3x
-32+2D+10

=-37 sin 3x = -37 L (2D - 1) sin 3x
2D +1 (4D%-1)

=-37 1 (2D - 1) sin 3x
{4(-3)-1}

= (2D - 1) sin 3x = 6 cos 3x ~ sin 3x
Hence the required solution of the given differential equation is
y = e*(C1 cos 3x + Cz sin 3x) + 6 cos 3x - sin 3x 1
Differentiating both sides of (1) with respect to x,

we get

g—y-=e'x (-3 C1 sin 3x + 3 Cz cos 3x) - e* (C; cos 3x + C; sin 3x) - 18 sin 3x - 3 cos 3x

X
2)

itis given that when x =0, y = 3 and %3—:— =0
.. From (1) and (2) we, have

3=C1+6 3)
and 0=3C-CG -3 @)
From (3) and (4) we get C1 =-3and C2 =0
-. From (1), we have
y = -3 e* cos 3x + 6 cos 3x - sin 3x (5)

. when x = /2 we have from (5)
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-n/2 COSE +6c033—7t —sinz
2 2

= 3e
y 2

y= -3e2.0+6.0+1

ory=1
Example 22. Solve (D2 + 1)2 = 24 x cos x given the initial conditions x =0,y =0,
Dy =0, D2y =0, D3y =12 (I.A.S. 2001)
Solution. Here the auxiliary equation is
(m2+1)2=0
or m = +i (twice)
s CFE =(Cix+C)cosx+ (Csx + Cy) sinx
and Pl = ——21——2— (24 x cos x)
(D* +1)
1 ix
=R.P. of — 5 3 24 xe
(D" +1)
=R.P. of 24 e ———1——2 X
[(D +i)? + 1]
=R.P.of 24 e” ——21—-—2 X
(D* + 2iD)
ix 1
=RP.of24 e X
DT
-4D? [1 + __J
2i

=R.P.of—6e”‘—(1+iD—§—D2+ ......... Jx
D 4
=R.P. of -6 &™ L (x +1)
D
=R.P. of -6 ™ (1 x> + % ixz)

=R.P. of - (cos x + i sinx) (x> + 3i x?)

= -x* cos x + 3x? sin x

- The solution of the given differential equation is
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y =(C1x + ) cos x + (C3 x + Cy) sin x - x3 cos x + 3x2 sin x
or y=(C1x+ Ca-x3) cos x + (C3 x + C4 + 3x?) sin x (1)
.. Dy = (C1-3x2) cos x - (C1 x+C2-x3) sin x + (C3 x+C4+3x2) cos x + (C3+6x) sin x
or Dy =(C1+Cs+ Cx)cosx + (C3 - Ca + 6x - C1 x + x3) sin x (2)
o D2y = —(C1+Cy+Cax) sin x + C3 cos x + (C3-Cat6x-Cix+x3) cos x + (6-4+3x2) sinx
or D2y =(6-2C1-C4-Cax +3x%)sinx+ (2C-Co+ 6x-Crx +x3)cos x  (3)

W Dy=(6-2C-Ci-Cax+3x) cosx + (-Cs+ 6x) sinx - (2C3 - Co+6x - Cr x +
x3) sin x + (6 - C1 + 3x2) cos x

or D3y = (12-3 C;-C4-Cs x + 6x2) cos x + (C2-3 C3 - 6x + C1 x + 6x - x2) sin x  (4)

Since we are given that x =0, y = 0, Dy = 0, D2y = 0, D3y = 12 so from (1), (2), (3)
and (4) we get

0=C 5)
0=C1+Cs (6)
0=2C3-Cs )
12=12-3C; -Cs 8)

From (5) and (7) we get C2=0=Cs
From (6) and (8) we get C; = 0=C4
.. From (1) the required solution is
y = 3x2sin x - x3 cos x
(D) PI when Q is of the form x. V, where V is any function of x
1 (x.V)=x. 1 V- £ (D)
£(D) fD)  {f O

Example 23. Solve (D2 - 2D + 1) y = x sinx

Solution. Here the auxiliary equationism? -2m+1=0
or (m-1R=0orm=1,1

- CF. = (Cy x + C2) ex, where C; and C; are arbitrary constants

and P.I=2—1—xsinx
D -2D+1
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~ . (2D - 2)
_XT——SI x—-T————ZSlnX
D?-2D+1 (D -2D +1)

_ (2D - 2)
=X —5———— sinx - —————"—— sinXx
-12 2D +1 (-1 -2D + 1)
=__lsinx-%(2D-2)sinx
2 D 4D

-% fsin xdx—1 2 (cos x ~ sin x)
2 2 p?

=X cosx- L L J.(cosx-sinx)dx
2 2D
=icosx-ll(sinX+COSX)
2 2D
=-’5cosx-l (sin x + cos x) dx
2 2
=§cosx-l(-cosx+sinx)
2 2
1 .
=E(xcosx+cosx—smx)

.. The required solutionis y = C.F + P.I

or Y=(C1X+Cz)ex+%(xcosx+cosx—sinx)

(E) To show that

Q=e* IQe"" dx, where Q is a function of x.
-a

Proof Lety = Q

D-a
Then (D - a) y = Q, operating both sides with D - a

or g—z - ay = Q, Which is a linear equation in y whose integrating factor is e-2x its
X

solution is ye-ax = IQ e ™ dx, neglecting the constant of integration as P.I is

required

or y = eax IQ e ™ dx

or ! Q=¥ IQ e™ dx
D-a
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Example 24. Solve (D2 + a2) y = sec ax (U.P.PC.S. 1971, 1973, 1977)
Solution. The auxiliary equationis m2 + a2 =0 or m = + ai

s C.F. = Cj cos ax + C; sin ax, where C; and C; are arbitrary constants

and P.I= 21 5 secax = 1 [ l, - 1, sec ax 1)
D +a 2ia | D-ia D+ia
Now — sec ax = e!™* Jsec ax. e dx
-ia
=™ Isec ax. (cos ax - i sin ax) dx
= e [(1-itanax)dx
= '™ [x + (—1—) log cos ax}
a
similarly,
— secax=e " ¥ Isec ax. e dx
D +ia

__ —~iax

e I sec ax (cos ax + i sin ax) dx

=¥ I(l +1 tan ax) dx

=e i | x - (—l—] log cos ax
a) 08
.. From (1) we, have

PI= El_ [ei ax {x +1 log cos ax} —eiax {x -1 log cos axH
a

ia a

ei ax _ e-l ax i ex ax e—i ax
=|x | —————|+ — (log cos ax). { ————
2ia a 2ia

(XY . 1 1
=3 sin ax + a—zcosax.(ogcos ax)

.. The required solution is

y=CF.+PL
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. XYy . 1
or y=Cicosax+ Czsinax + (—-) sin ax + (—2—) cos ax. log cos ax
a a
Example 25. (D2 + a?) y = cosec ax
Solution. Here the auxiliary equation is m? + a2 = 0
or m=tai

. .. CF.=Cj cos ax + Cy sin ax and

1 1 1 1
Pl= ——— cosecax= — — - — | cosec ax (1)
D +a 2ia [D-ia D+ia
Now — cosec ax =e'™ j(cosec ax) e dx
-ia
=e' Icos ec ax (cos ax - i sin ax) dx
=gl ™ j(cot ax - i) dx
iax 1 : .
=g — (log sin ax) - ix
a
and — cosecax = e & I (cosec ax) e' ™ dx
+ia

=gl I(cosec ax) (cos ax + i sin ax) dx

=g 1™ f(cot ax + i) dx
=gl [l (log sin ax) + ix]
a

. From (1) we have

Pl= —1— [ei a" {l (log sin ax) - i x} - {l (log sin ax) + ix}]
2 a a

1a

|1 (log sin ax) em-et?) x e rel™
Az 008 2i a 2
1) . . X

= (—ZJ sin ax (log sin ax) - (—) (cos ax)
a a

.. The required solutionisy = C.F + P.I
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or y=Cicosax+ Cysinax + (fz—j sin ax log (sin ax) —(2) cos ax

Example 26. (D? + a?) y = tan ax

Solution. Here C.E. = C; cos ax + C; sin ax

1
5 tanax = —

and PL= —+ [ LS 1,]
D? +a? 2ia |[D-ia D+ia

tan ax 1)

Now

tan ax = e! Ie'i tan ax dx
-ia

=e ™ I(cos ax - i sin ax) tan ax dx
i sin® ax
=e'® |lsin ax -1i dx
cos ax

, . . 1 - cos? ax
=g' ¥ _[sm axdx -ie'® J(———— dx

COos ax

= ol {(-cos ax)/a} -i el ¥ j.(sec ax - cos ax) dx

(ei * cos ax)} - ie'™ [—1- log tan (E + -az—x) EI ax}
a a

I
1
|
r—

el ™ {cos ax + ilog tan [g + %’E] —isinax}

]

[
N
| e
N’

]
i

ol 2% [(cos ax - isin ax) + ilog tan (Z- ¥ %H

e' ™ | e +jlog tan (E + 35)
4 2

1 i T ax
= - 1+- 1axl ta —_+ == 2
a[ ie og n(4 2)} (2)

D= W

Similarly replacing i by -i we get
tanax=—(l) [1—ie'“" log tan G + 'i‘iﬂ 3)

a 2
= From (1), (2) and (3), we have
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P.I=——¥— 1 1+ie”"logtan(£+9—x-) +—1- 1-ie'ia"logtan(z+3§]
2ia | a 4 2 a 4 2
_ 1 i iax -iax T ax
i |5 (e e ogran (54 )

ax

= -fi— (cos ax) log tan (% + ———)

2
.. The required solutionisy = C.F + P.I

ory=Cicos ax + Cz sinax - alz-cosaxlogtan (g + Ez)ij

Miscellaneous solved Examples
Example 27. Solve (D2 - 2D + 1) y = x2 e3x
Solution. Here the auxiliary equation is
m2-2m+1=0

or (m-12=0

or m=1,1

S CFEF. = (C1 X + Cz) ex

and P.I.=—2—1———x2 e =¥ 5 1 x?
D?-2D +1 (D+372 -2(D+3)+1
= 3% = 1D+4x2=e3x 1 . 2
+
4(1+2)
2
e

g

3x -2 3x
(1+1D) x2 =g (1—D+§D2+ ......... )xz
2 4 4

e (xz -Dx? + % szzj

e3x (X2 - %+ 2)
2

e (2x2 -4x+ 3)

[} it

00| = | |

-. The required solutionisy = C.F + P.I
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or y=(C1x+C2)eX+%e3x(2x2-4x+3)

Example 28. Solve (D2 - 1) y = cos hx

Solution. The given equation can be written as
©2-1y= 2 (e+e)

its auxiliary equationis m?-1=10
orm=x1
- CF. = Gy ex + Gy e, where Cy, C; are arbitrary constants

1 1

and Pl= — E(e"+e"‘)

1 1 .1 1
== e+~ ——e

2 (D*-1) 2 D*-1

1 1 1 1
= ——— 1+ ——¢
2 (D+1°-1 2 (-1)*-1

1 1 1
= X_____— 1__ -X

2¢ prap Vg

1 1 1
== e 1) - = e

2 2D(1+E) 4

2

=—1-e"l(1——12+ ....... jl———e"‘
4 D 2 4
e lg L

4 D 4

=le" jldx—-l—e"‘=—e"x——1—e"‘
4 4 4 4

" .. The required solutionisy = C.F + P.I
ory=Crex+Crex+ % (x ex-ex)

Example 29. Solve (D? - 4) y = cos? x
Solution. Its auxiliary equationism?-4=0

orm=12
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o CF. = Cy e+ C; e-2, where C; and C; are arbitrary constants

and PI= 21 cos®x = 21 [-l- (1 + cos 2X)}
D® -4 D* -4 (2
= 21 l+ 21 (1 costj
D°-4 2 D -4\2
-1
-1 1—1D2) 1,1 ! cos 2x
4 4 2 2 2%
=—l[1+lD2+ ......... :]l-—cos?_x
4 4
-1 (1) A cos 2x
412, 1
1
=-— (2+cos 2x)

. The required solutionisy = C.F + P.I
ory=Cex+ Cre —llé (2 + cos 2x)

. Example 30. Solve (D2 + 1) y = x2 sin 2x
Solution. Here the auxiliary equationis m? + 1= 0
orm=rti

.. C.F = C; cos x + Cz sin x, where C; and C; are arbitrary constants

x? sin 2x = LP of 1 x? %

dPI=
an D?+1 D? +1

= LP of e** -————12—~ x2
{(D +2i)" +1}

= LP of e2* ——5—1—————— x2
(D? +4iD - 3)

= L.P of &2 1 2

4iD D?
3122 -
3 3
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2ix . 2 +2 2
=1Pof & 14| HD D7) 16 D SO x?
-3 3 9

=I.Pof——l~e2ix (1+éiD—ED2+ ........ )xz
3 3 9

—IPof -1 e 32 + 3 (2x) - 13 (2)}
3 3 9

=LP of-l (cos 2x + i sin 2x) (xz - _Zf’_) + 3 xi
3 9 3

—l (§ x) Cos 2x -1 (xz - Eé) sin 2x
313 3 9

—517— [24 x cos 2x + (9x* - 26) sin 2x]

.. The required solution is

y =Cicos x + Czsin x—517— [24 x cos 2x + (9x2 - 26) sin 2x]

EXERCISE
Solve the following differential Equations
1. (D8+6D2+11D+6)y=0
Ans. y=Ciex+Crex+ Ciex

2

2. d——)S-3g->f+2x=0 giventhatwhent=0,x=0and9—§=0
e dt dt

Ans. x=0

3. (D2+D+1)y=ex where D = di
x

Ans. y=e/? [Cl cos (% x\/g) +C, sin (—;— x\/g)] +e™
4. (D-12(D2+1)2y =ex
Ans. y=(Cix + Cg) ex + (Cax + Cq) cos x + (Csx + Cg) sinx + -é x? e*

2
5. (_;___}2_1__ 3_y+2y=e"’y=33nd—31=3,WhenX=0
X X X
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Ans.

Ans.

10.

11.

Ans.

12.

Ans.

©13.
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y = 2ex + e2x - x ex
d’y _dy

—ie - 2 = 2y = 8in 2X
o ax Y

y=Ciex+Crex + -216 (cos 2x - 3 sin 2x)

(D2 +16) y = sin 2x, given thaty = 0 and % = % where x =0
X

12y = 2 sin 4x + sin 2x

d?y
—= -4y =e* +sin 2x
dx? Y

. y=Ciex+ Cre —% e —% sin 2x

(4D2 + 9) y = sin x, given that y = — ¥=—whenx=1t
X
2 3x 1 . 3x 1 .
y=—cos — - — sin — + — sinx
3 2 2 2 5

Find the integral of the equation (cll_t;( + 2n cos x %)ti +n

Ly, dx
which is such that whent=0, x =0 and It =0
in nt
x = e nteose {— T sin (n sin ) t} + ___azsm—
n‘ sin 2o 2n° cos a

2

Solve —3—32’ + a’y = sin ax
x

. X
y = C1 cos ax + Cz sin ax N cos ax
a

(D2 + a?) y = cos ax

y =Cicos ax + Casin ax + -12- [5) sin ax
a

(DA-1)y=sinx

) P
y=Cirex+ Crex+Cicos x + Cysinx + 1 cos x

72
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Ans. y= e /2 |:Cl Ccos % x\/g +C, sin _;_ x\/—S—] + X/

[C3 cos %\/5 +C, sin -;—\/E:I -16e"% cos (—;—J’Sj
15.  (D?2+ 1)y =sinxsin 2x
Ans. y=Cicosx+ Casinx + E sinx + 1_16- cos 3x

2
16. 3—}2’ + 4y = sin®x
X

Ans. y=C;cos 2x + Casin 2x + 1 _x sin 2x
8 8

17. (D2 -4)y=x

Ans. y=Cex+ e -% (xz + -;-J

18. Solve (D3 -8)y = x3

Ans. y=C;ex+ex(Cacos xv/3 + Cs sin xV3) - —;— (x3 + i—]

19. (D3+2D2+D)y=ex+x2+x

Ans. y=C1+(C2x+C3)e-x+_ll_8_e2x+%x3_%xz+4x

2
20. %—%:‘-a*‘bX"‘CXz’ giVenthatg—Y'=0, Whenx=0andy=d,whenx=0
X X

Ans. y=d+ —+ — + —
21. (D2+4D-12)y=(x-1)eX

Ans. y=Cied+ Cpedx+ ?512 (4x2 - 9x) &2

2
22. (-‘;—Z—Z%X+5)y=e2"sinx
X X
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Ans.

23.

Ans.

24,

Ans.

25.

Ans.

26.

27.

Ans.

28.

29.

Ans.
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y =ex (Cy cos 2x + Cz sin 2x) - % e?* (cos x - 2 sin x)
(D2 -4D + 4) y = e2* sin 3x

y=(Cix+Cp)ex - —;— e sin 3x

3

et

y=(C1x2+C2x+C3)e~’<+gldx5 e
2

%X—Z-+2§+y=xcosx

y=(Cix+C)ex + %xsinx-%sinx+%cosx

4
g——%—y=xsinx
X

y=Ciex+ Crex+ Cicos x + Cgsinx + %3— (x* cos x-3 x sinx)

2
d_>2’ 2 4 oo ysinx (L.A.S.1998)
dx dx

y=(C+Cx)ex + % (sin x + cos x - X €os X)

Solve (D2 + 1)2 y = 24 x cos x, given that y = Dy = D2y = 0 and D3y = 12
when x =0

y = 3x2 sin x - x3 cos x

(D2-4D +4) y = 8x2 €2 sin 2x (U.P.T.U. 2004, 2005)
y = (C1 + Cz2x) €2 + €2 (-2x2 sin 2x - 4x cos 2x + 3 sin 2x)
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Objective Type of Questions

Choose a correct answer from the four answers given in each of the
following questions.

1.

(@)
(©)

Ans.

(@)
(©)

Ans.

@

(©)

Ans.

(@)

(©)

Ans.

2

2

The solution of the differential equation % +(3i-1) jy

y = Cl ex + C2 e3ix (b) y = Cl e X+ C2 e3ix
y= Ci ex+ Cp e3ix (d) y= Cyex+ Cy e-3ix
()

X X

3iy = 0 is

(LA.S. 1998)

A particular integral of the differential equation (D2 + 4) y = x is

xe-2x (b) X €OS 2X
X sin 2x (d) x/4
(d)

The particular integral of (D2 + 1) y = e is

e—x
< @

(©)

(I.A.S. 1998)

(L.A.S.1999)

For the differential equation (D + 2) (D - 1)3 y = ex the particular integral is
(I.A.S. 1990, U.P.P.C.S. 2000)

L x* e* (b) 1 x> e
18 18
L x > (d) L x >
18 36

(b)

d2y

The particular integral of the differential equation O +9y =sin 3x is
X
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X sin 3x X sin 3x
b

@ 2 ® =

-X €08 3x X €os 3x

_ d
© =2 @ ===
Ans. (c)

. . . . dzy dy .
6. The solution of the differential equation o7 3 ol 4y =0 is
X X
(U.P.P.C.S. 2001)

(@ y=Cex+Cre¥ (b) y=Ciex+ Cre¥
() y=Ciex+Cre¥ (d) y=Cex+Cre¥

Ans. (c)

7. The general solution of the differential equation (D2-1) y = x2 is
(@ y=CGe+Cex-x2 (b) y=Cex+Crex+ (x2+2)

() y=Cex+Crex-2 (d) y=CGex+Cex-(x2+2)

Ans. (d)

8. The P.I. of (D2 - 2D) y = ex sin x is

a 1 e* sin x b e* cos x
@ -5
1 x
() -5 e Cos X (d) none of these
Ans. (a)
9. The general solution of the differential equation D2 (D + 1)2y = exis
(I.A.S. 1990)
(a) y=C1+C2X+(C3+C4X)e"
(b) y=C1+sz+(C3+C4x)e-"+—1—e"
© y=(Ci+Cre®)+(Cs+Cox)e + % e
(d) none of these
Ans. (b)
10. y=ex(C4 cosv/3 x + C, sin +/3 x) + C3 e2 is the solution of
(L.A.S. 1994)
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(a)

(©)

Ans.

11.

(@)

Ans.

12.

(@)
(©)

Ans.

13.

(a)
(©)

Ans.

14.

©)

Ans.
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d3y d3y
— +4y=0 b —= +8y=0
o Ty O
d’y &y ,d , dy
—= -8y=0 d —5-2—+—=-2=0
dx? Y @ dx? dx®*  dx
(©
The P.I of the differential equation (D3 - D) y = ex + e is
(L.A.S. 1993)
S re) ® 5 x(E e
% X2 (* +e™) (d) - % X (e¥ -e™)
(b)
Giveny =1 + cos x and y = 1 + sin x are solutions of the differential
2
equation j—)zi +y =1, its solution will be also
X
(R.A.S. 1994)
y=2(1+ cos x) (b) y =2+ cos x + sin x
y = €0s X - sin x (d) y =1+ cos x + sin x
(@)
The solution of the differential equation (D3 - 6D2+ 11D -6) y =0is
(R.A.S. 1994)
y:C:l eX+C2 e2X+C3 e4x (b) y:-:(:1 er+C2 e3x+C3 e4x
y=Cirex+ Crex + Cye¥x (d) y=Cirex+ Cyex + C3eX
(d)
. , : . d’y dy 2x
The solution of the differential equation 7 ax 2y =3 e, when y(0)
X X
=0=and y(0) =-21is
(R.A.S.1994)
y=e—x_e2x+xezx (b) y=eX_e—2X_xe2x
b X
= o—X + p2x __ a2x d = X = @-2X . a2x
y=extex e (d) y=ex-e 5 €

()
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15.

16.

(a)
(©)

Ans.

17.

(a)

©)

Ans.

18.

(@)
(©)

Ans,

19.
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2
The solution of the differential equation %—}2’ +y =cos 2x is
X

(U.P.P.C.S. 1995)

. ()

Acosx+Bsinx+%cost (b) Acosx+Bsinx+%sin2x
. 1 . 1 .

Acosx+Bsmx—é—c052x (d) Acosx+Bsmx-§sm2x

d2
The general solution of the differential equation d—}; +n?y=0is

X
(R.A.S. 1995)

C, Vcos nx + C, vsin nx (b) C, cos nx + C, sin nx
Ci cos?nx + Cz sin?nx (d) C1 cos®nix + Cz sin3 nx

(b)
2
The particular integral of dy + dy x? +2x+4 is

dx*  dx
(LA.S. 1996)
2 3
X 4+ ax (b) X 44x
3 3
3 3
X 44 d) 2+
3 3
(b)
The general solution of the differential equation
4 3 2
1Y ¢4y pdY g dV g5
dx*  dx® dx dx
(I.A.S. 1996)

y=Ci+(Co+ Cx+Cyx2) e (b) y = (C1+ Cax + C3x2) e
y=C1+Cox+Cax2+ Cyx3 (d) y=Cix+Cox2+ Cax3+ Cyxt
()
The primitive of the differential equation (D2 ~ 2D + 52y = 0 is
(I.A.S. 1995)
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(a)
(b)
(©)
(d)

Ans.

20.

(a)
(c)

Ans.

21.

(@)

(©)

Ans.

Linear Differential Equations with Constant Coefficients and Applications

ex {(C1 + Cax) cos 2x + (C3 + C4 x) sin 2x}
e {(Cy + C2x) cos x + (C3 + C4 x) sin x}
(Ciex+ Coe?) cos x + (Cs ex + C4 e2) sin x

ex {Ci cos x + Ca cos 2x + C3 sin x + C4 sin 2x}

(@)
Which one of the following does not satisfy the differential equation
d’y
— -y=0?
dx’ Y
(U.P.P.C.S.1994)
ex (b) ex
ex/2sin —\E X (d) e*/2 cos ﬁ x
2 2
(b)
The particular integral of (D2 + a?) y = sin ax is
(I.A.S. 1995)
- cos ax (b) X cos ax
2a 2a
-2X cos ax (d) X cos ax
2 2
(@)
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Chapter 4

Equations Reducible To Linear
Equations with Constant Coefficients

INTRODUCTION

Now the shall study two such forms of linear differential equations with variable
coefficients which can be reduced to linear differential equations with constant
coefficients by suitable substituitions.

L Cauchy's Homogeneous Linear Equations

A differential equation of the form

dn dn -1
x“dZ+P1x“'ldn_}1’+ ........... +Py=X
X X
where Py, Ps............. P, are constants and X is either a function of x or a constant is

called Cauchy-Euler homogeneous linear differential equation.

The solution of the above homogenous linear equation may be obtained after
transforming it into linear equation with constant coefficients by using the
substitution.

By the substitution x = e? or z = logex; .- g_z_ = 1
X X
Now & - dy dz _ 1 dy
dx dz dx x dz
L4y _dy 0
dx dz
_d’y _d (dy)_d 1dyj
Again &2 dx (dx) dx(x dz
dy dz_dy  dy 1 dy
dz? dx dz dz? x dz
2 2
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ey _dy dy 2
dx? dz? dz
Also 131 = _C_l_ g_z_y _d 1 ﬂ - ﬂ
x> dx | dx® dx { x?> {dz? dz

Substituting 3—2- -1 and simplifying, we get
X X

3 3 2
sy _dy ,dy ,dy

X 3
dx®* dz® dz? dz )
. d d .
Using x — = — = D,in (1), (2) and (3)
dx dz
we get X & Dy
dx

d2
x? £=D(D—l)y
3 d3Y
X ’C-IF=D(D—1)(D—2)Y

In general, we have

2 dy

Xn

X

=DD-1)D-2)co..n. O-n+1)y

Using, these results in homogeneous linear equation, it will be transformed into a
linear differential equation with constant coefficients.

2
'd_}i,' _ Xix -3y = x2 log x (1.A.S. 2001)

Example 1. Solve x*
dx dx

Solution. On changing the independent variable by substituting

x=eZorz=logexand-fi— =D
dz

82



Equations Reducible To Linear Equations with Constant Coefficients

The differential equation becomes
[D(D-1)-D-3]y = ze%

or (D?2-2D -3)y = zeZ
Now the auxiliary equation is m? -2m -3 =0
= m=3,-1
Hence, the CF.=Cie32 + Ce2=Cy x3 + S
X
and PL= ——5—-1— ze*?
D“-2D-3
2z 1 2z 1
= z= 2 Z
(D+2?-2(D+2)-3 D?*+4+4D-2D-4-3
— A2z . 1 z
D +2D-3
= 1 5N Z
3 (1_@_13_}
3 3
e [ (> D]
= R e z
3| 3 3
2z 2
S P P
-3 3 3
2z
=e Z+___)=e22 (_E_g)
-3 3 9

Hence solution of the given differential equation is
‘ C 1 2

=C, x° + =2 4+ 2(__1 ___)
y=C; x = X 5 108X - 5

2
d
Example 2. Solve x2 ix—}; - 2x EI% -4y = x*
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Solution. On changing the independent variable by substituting x = ez or

z =logex and 4. D
dz

The differential equation becomes
[D(D-1)-2D-4]y=e%

Now, the auxiliary equation is
m2-3m-4=0orm=4,-1

LCFE. =Cietz+ Cyez

=C1x4+C21 I eZ:X
X
and PIL= ——5—1—— e
D -3D-4
- e4z 1

(D+4)P -3(D+4)-4

4z 1
=e 5 1
D?+16+8D-3D-12-4
=e* —-——21 1
D? +5D
-1
= e?? 1 ) 1=¢* 1 (1+9) 1
5D(1+—) 5D
5
=e4zi 1-2+ ................ 1
5D 5
5D 5 5
= = x* log,x

Hence the required solution is

1.1
y=C1x4+Cz—>z+—5—x4 log.x
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3 2
Example 3. Solve x° dy +2x? &y +2y =10 (x + l)
d® dx? X

(I.A.S. 2006, 1998, U.P.P.C.S. 1973)
Solution. On changing the independent variable by substituting x = ez or

z = logex and Dthe given differential equation becomes

dz
[D(D-1)(D-2)+2D(D-1)+2]y=10 (e* +e*)
or (D3-D2+2)y =10 (ez + e?)
The auxiliary equation is
m3-m2+2=0or(m+1)(m2-2m+2)=0
or D=-1,1%i

CF=Ciez+Crezcos (z+ C3)

=C1x1+ Ca x cos (logex + Cs)

and Pl = 12 10e* + 12 10e™?
(D +1) (D? - 2D + 2) (D +1) (D? -2D + 2)
= ' 21 10e* +e* 1 5 10
(1+1) (12 -21+2) (D-1+1)}{(D-1)° -2(D-1)+?2}
=110ez+e'z 5 1 10
2 D(D?+1-2D-2D +2+2)
~5efte? — 10
D (D? - 4D +5)
=5¢e% +e7* 1 5 10
spl1-4D , D0
5 5

=5e% +e7* 1 10
5D
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= bez + 2e-z 1 1=5e?+2ez2z
D
=Dbez + 2z ez
1
=5x + 2 (log.x) —
X
Hence the required solution is

y =Cix1+ Cox (logex + Cz) + 5x + (2 logex) 1
X

3 2
Example 4. Solve x° _:ilx_); + 3x? g—x—}; +xd—i +y=x+log x

(Bihar P.C.S. 2002, U.P.T.U. 2001)
Solution. On changing the independent variable by substituting

x = ezor z = logex and di = D, we have
z

[D(D-1)(D-2)+3D(D-1)+D+1]y=ez+2z
-or (DP+1)y=ez+z

The auxiliary equationism3+1=0

or (m+1)(m2-m+1)=0

1+/31i

= m=-1,
2

so C.F. =Cyez+e?/2 (CZ cos —\/2—-5— z+C, sin —\/2-”;1 ZJ
1

and Pl =
D® +

- (e +2)
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1 e, 1
D3 +1 1+D?

- ey @)

e*+(1-D’+....)z

z

]
N | =

N | B

+z

Therefore required solution is

ﬁ]ez

y=Ciez+ez/2 [Cz cosizg-z+C3 sin—z |+ — +z
or y =Ci x! +/x [Cz cos —\/2—5 (log x) + C4 sinizg— (logx)} + % + log x

2
Example 5. Solve x> d—%l- +x dy +y = (log x) sin (log x)
dx dx

(U.P.T.U. 2002)
Solution. On changing the independent variable by substituting x = ez or

z =logex and 4. D, we have
dz -

[D(D-1)+D+1]y=zsinz
or (D2+1)y=zsinz
The auxiliary equation is
m2+1=0
or m=ti
Thus CF.=Cicosz+(Cysinz
= C; cos (log x) + Cz sin (log x)

& P.I.=————1——zsinz
D? +1

o tof
imaginary part o o
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1
_Z
(D+i? +1

1 Z
D? +2iD-1+1

= LP. of el?

=LP. of e

-1
=I.P.ofe‘z_i 1+2, z
2iD 2i

=I.P.ofeiz—1— 1-2+ ...... )z
2iD 2i

. 1 1
=IP.ofe” — [z- —
¢ 2 \* ZiJ

=LP. of e l J(z + i) dz
2i 2
2

iz :
=IP.of = |Z + 22
2 |2 2

N,

=1P.of X (cosz + i sin z) +L,
2 2
Z)
2

z 1 . z .
=-—cosz+ — zsinz= — (sinz- zcos z)
4 4 4

+

NN,

=1P. of-—;— (i cos z - sin z) (

N | =

- 102 X [sin (log x) - log x cos (log x)]

Hence required solution is

y = Ci1 cos (log x) + Ca sin (log x) + log x [sin (log x) - log x cos (log x)]
2

Example 6. Solve x2 %-)21 - X j—y + 4y = cos (log x) + x sin (log x)
X X

Solution. On changing the independent variable by substituting x = ez or

z =log x and 4 D we have
dz

[D(D-1)-D+4]y=cosz+ezsinz
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or (D2-2D+4)y=cosz+ezsinz
The auxiliary equation is
m2-2m+4=0
= m=1% i3
Therefore C.F. = ez (C; cos v/3 z + Cz sin+/3 2)

€y (e n (1

and P.I=—2—1———cosz+-—~—2——l————ezsinz
D -2D+4 D -2D+4

z 1

z+e 5 sin z
D+1)y-2(D+1)+4

-—2—‘-——-COS
-1°-2D+4

-1 cos z + e* sin z
3-2D D? +3
3+2D z

cosz+te

9-4D? ~-12+3

=wcosz+.e__.sinz
9-4(—1)2 2

1 (3+2D)cosz+ 1 e’ sinz
13 2

sin z

[l

-1 (3cosz-2sinz)+ 1 e’ sinz
13 2
= 1—13 [3 cos (log x) - 2 sin (log x)] + —;- x sin (log x)
Therefore required solution is
y=x [Cl cos (\/5 log x) +C, sin (\/—3_ log x)] + % [3 cos (log x) - 2 sin (log x)] + % x sin (log x)

2
Example 7. Solve x 2_321 vax o 2y = e*
dx dx

[U.P.T.U. (CO) 2005]

Solution. Substituting x = ez or z = logex and putting a-d— = D, we have
z
[D(D-1)+4D-2]y= e
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or (D+2)(D+1)y=e
The auxiliary equationis (m + 2) (m + 1) =0
= =-2,-1
CF=Ce2Z+GeZ=Cx2+Cyx!
and PI= 1 e = {L - } e
(D+2)(D+1) D+1 D=+2
1 eZ 4
Let e =u -~ (D+NDu=e
D+1
du oZ e e
or — +u=-e%, whichis linear
dz

Integrating factor = ez, Hence its solution is

z
ue’ = Iez et dz

= Ie" dx vel=x ., eZdz=dx
=eX
1 1
or u=e"——z—=~e" cef=x
e X

Further, let L e =v
D+2
. (D+2) v =e¢*
dv 4 T
or 4 +2v =¢% , which is linear
z

Integrating factor = e2z, Hence its solution is
ve? = J.e2z et dz
t2
= jez ef e’ dz
= Ix e* dx v ef=x, . et dz=dx

=ex(x-1)
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_e€(x-1) _e"(x-1) _e ¢

e2zc X2 X X2

1 e* e* e*

Hence Pl=u-v=-¢*- —-=|==
X X X p'e

. Hence the required solution is

X

e
y=C1X'2+C2X'1 + —
X

2. Legendre's linear differential equation

(Equation reducible to homogeneous form)

An equation of the form
dn -1
n-1 Y o4k y=X 1
T nY M
Where a, b, ki, ka,........... kn are all constants and X is a function of x, is called

Legendre's linear equation.

Such equations can be reduced to linear equations with constant coefficients by
substituting ax + b =eZi.e. z = log (ax + b)

dz’ dx dz dx ax+b dz

Eyd( by b, s ()

"~ (@ax+b) dz ax+b dz (dz) dx

2
ie. (ax# b) g—Z =a’D(D-1)y
X

3
Similarly (ax + b)3 —3—% =a’D(D-1)(D-2)yand so on.
X

After making these replacements in (1), there results a linear equation with
constant coefficients.
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2
Example 8. Solve (1 + x)? % +(1+x) Z—Y— +y=4coslog(1+x)
X X

Solution. put1 + x = ezand % =D
Hence the given differential equation becomes
[D(D-1)+D+1]y=4cosz
.. Auxiliary equation is
D2+1=0orD=1¢i
= CFE.=Cicos (z + Ca) = Cqcos [log (1 +x) + C]

and PI= 5 4cosz=4.£sinz
D +1 2
=2zsinz
=2log (1 + x) sinlog (1 + x)

Hence the required solution is

y = Cicos [log (1 +x) + C] + 21log (1 + x) sinlog (1 + x)

Example 9 : Solve

2
(1+2x)? ii-% -6(1+2x) dy | 16y = 8 (1 + 2x)?
dx dx
andy (0) =0,y (0)=2 (LA.S.1997)

Solution: Let1 + 2x = z then

_____ =2
dx dz dx dz
.dz_,
dx
d’y d dy)dz d*y
d —2Z=—|2-2|-—=4—=
an dx? dz( dz Jdx  dz?

Substituting these in given differential equation we have
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2
4zzd—}2,—6-22-3—y+16y=822

dz z
2
orz? 4y _ SZQ +4y =277
dz? dz

putting z = et, we have
{6(6-1)-20 +4} y = 2e2
or (6240 +4) y = 2ex
its auxiliary equation is
m2-4dm+4=0
ie. (m-2)2=0
or m = 2 (twice)
o CF =(C + Got)e2t
= (G+Cilogz)z?
= {C; + Colog (1+2x)} (1+2x)?

and Pl=——— 2% =X — 1 1
0°-40+4 ©+2)"-4(0+2)+4
=2e? 1 122621 1
0% +40-4-46-8+4 9?

= 2e2t32i = z2(logz)2

= (1+2x)? {log(1+2x)}*
Hence the complete solution is
y = {Ci1+C; log (1+2x)} (1+2x)2+(1+2x)2{log (1+2x)}2
METHOD OF VARIATION OF PARAMETERS

Method of variation of parameters enables to find solution of any linear non
homogeneous differential equation of second order even (with variable
coefficients also) provided its complimentary function is given (known). The
particular integral of the non-homogeneous equation is obtained by varying the
parameters ie. by replacing the arbitrary constants in the CF. by variable
functions.

- Consider a linear non-homogeneous second order differential equation with
variable coefficients
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d’y dy

3z TP QMY =X() (1)
Suppose the complimentary function of (1) is = Ciy, (x) + Cay, (x) (2
so thaty, and y, satisfy

d’y dy

—L +P(x) L+ =0

L +P vy

In method of variation of parameters the arbitrary constants C; and C: in (2) are
replaced by two unknown functions u (x) and v (x).

Let us assume particular integral is = u(x) y, (x) + v(x) y,(x) 3)
where u= J——;?(L dx

Y1Y2 =Yi'Ya
and v= I———>|(—L-—|—— dx

Y1Y2-Y1Y2

on putting the values of u and v in (3) we get P.I
Thus, required general solution = C.F + P.I
Example 10. Apply the method of variation of parameters to solve
(U.P.T.U. 2009)

2
9—y—+y=tanx

dx?
Solution. The auxiliary equationism2+1=0=>m=4+i
~ CF.=Cycos x + Ca sin x 4}
Here y1 = cos x, y2 = sin x
" Therefore y, y,' - y,'y, = cos’x + sin’x = 1
Let us suppose PI=uy, +vy, (2

where

u= J- —IXyz, dx=_J‘Sln x tan x dx
Y1¥2 =Y1'Y2 1
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) 2
sin“ x 1 - cos“x
=—J‘ dx=-I—-————— dx

Ccos X cos X

J'(cos X - sec x) dx

sin x - log (sec x + tan x)
& V=J‘ )|(yl — dx= Itan XCOSX o
Y1 Y2 =Yi'Y2 1

= jsinxdx=—cosx

Putting the values of u and v in (2), we get
Pl=uyi+vy2
= [sin x - log (sec x + tan x)] cos x - cos x sinx
= - cos x log (sec x + tan x)

Therefore, complete solution is

y = C1 cos x + Cz sin x - cos x log (sec x + tan x)

- Example 11. Use variation of parameters to solve

dzy

w—+y=secx

(U.P.T.U. 2002)

Solution. The auxiliary equation is

m2+1=0
= m=z=i
C.F=C1cos x + Cz sin x 1
Here y1 = cos x, y2 = sin x
Let us suppose P1.=uy +vy, (2)
where u= J.iec_’lfﬂ dx - u= I———%—-— dx
Yi¥2-Y1Y2

As v, ¥, -V, Y, = cosx cos x - (- sin x) sinx
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= cos’x + sin’x
=1

= —jtan x dx

= log cos x

and v= J'————XXI-—— dx
Yi¥o=Y1 Y2

_ J'cos xlsec:xdx= Idx=x

putting the values of u and v in (2), we get
P.I=log cos x. cos x + x. sin x

Therefore, complete solution is

y = C1 cos x + Czsin x + cos x. log cos x + x sin x

Example 12. Using the method of variation of parameters solve
d?y
—= +4y =4 tan 2x
dx? Y

(LA.S. 2001, U.P.T.U. 2006)

Solution. Here the auxiliary equations

m2+4=0 = m=%2i
C.F =C;cos 2x + Cz sin 2x (1)
Here y1 = €os 2X, y2 = sin 2x
Let us suppose P.I. = uy: + vy2 2
where u= I —XI y2d>'< _ I— 4 tan ix sin 2x dx
Y1¥2-Y1 Y2

" ASY, ¥, -y Yo = 2cos 2x cos 2x + 2 sin 2x sin 2x = 2

.2 2
=_.[2sm 2de=—jl cos 2xclx
cos 2x cos 2x

=2 J.(cos 2x - sec 2x) dx
= sin 2x - log (sec 2x + tan 2x)
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V=J' ),(Y1 — dx= J‘4tan2xcos2x
Y1¥2 =¥1' Y2 2

and dx

=2 |sin 2x dx = - cos 2x

putting the values of u and v in (2) we get
P.I = {sin 2x - log (sec 2x + tan 2x)} cos 2x - cos 2x sin 2x
= - cos 2x log (sec 2x + tan 2x)
Hence, the complete solution is
y = Ci cos 2x + C; sin 2x - cos 2x log (sec 2x + tan 2x)
Example 13. Obtain general solution of the differential equation
2 d’y dy 3

X'— tXx=——-y=Xx

eX
dx? dx

(U.P.T.U. 2002)

Solution. On changing the independent variable by substituting x = eZ or

z = logex and di = D the differential equation becomes
z

[D(D-1)+D-1]y=e% e
or (D2-1)y =e¥ e’
Here auxiliary equationism?-1=0=>m=zx1

CF=Cez+Ce?

= C.F=C1X+E—2—
X

LetPI=uyi+vy2

Herey;=xand y, = 1
X
1
-x* ¥ ~dx 2_x
AISO u-= J. -le2dx' = J‘ X 1 = J.—x e2 dX
Y1Y2-Y1 Y2 X (__1_) -2 ) Bt
x2 X X
= % J.x3 e* dx
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u=1 [x3 e* - 3x% e* + 6xe* —6e"]
2
=l[x3-3x2+6x—6] e
2
3 _x
& V=I X'yldxI =J‘ x” e x dx
YiY2-Y1 Y2 X(_l) _1 1)
x?) x
4 X
=jx € dx=—l x° e* dx
L2 2
b
or v=—% [x° e -5x" e* +20x* e* - 60 e* +120xe* - 120 ¢ |

putting the values of u and v in equation (2) we get

PI= % (x> -3x* + 6x - 6) &* x - % (<° - 5x* + 20x® - 60 x* + 120 x - 120) e* 1
X
= e? [x‘* -3x% + 6x% - 6x - x* + 5> - 20x% + 60x - 120 + @]
x
X
=2 [2x3 - 14x% + 54x - 120 + 29]
2 X
- Hence the required solution is y = C.F + P.I
or y=C1x+—C—2+(x3—7x2+27x-60+ég)ex
X X
Example 14. Solve by method of variation of parameters
2
d—’zi - (U.P.T.U 2001)
dx 1+e*

Solution. Here auxiliary equationism?-1=0
= m=%1

L CF=Cex+ Cex

Here y1 =eX, y2 = e

Let P.I=uy: +vy2
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2
e

where u= I————_'XL—'— dx = Il—ti—— dx
YiYe -1 ¥2 -2

VYY) -yy, T-et e -et e =2

=J.e_ dx=J j.[——— ! )dx
1+e* e* (1+e) 1+e*

= forax- [

=-ex+]og (ex+1)

V=I-—Xry—‘—.-—dx= € 2 ix
Y1Y2 -1 Y2 -2 1+e

X

=—J.lie

PI=uy, +vy,

— dx = ~log (1 + e¥)

= [-ex + log (ex + 1)] ex - exlog (1 + e¥)

=-1+exlog (ex+1)-exlog(ex+1)
Ly=Cex+Crex-1+exlog(ex+1)-exlog(ex+1)

Example 15. Apply the method of variation of parameters to solve

X

2
d d’y _3 dy +oy= e
dx? dx 1+ e
(U.P.T.U. 2005)

Solution. Here auxiliary equation is

-3m+2=0
= (m-1)(m-2)=0
= m=1,2

L CE.=Cex+ Crex
Here y, = e, y2 = e

PiI=uyitvy2
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where u= J‘-—)'(—yi'—- dx
YiY2-YV1 Y2
ex e2x ‘_e—3x
= [—2ALE dx= [LreT_ g
_[ eX (2e2x) _EZX (eX) 2e3x _eSX

-3x

- 1
ij__) ax=-[ L ax

_J' e *dx _ log (e_x + 1)

e*+1
e* o
— X¥; — 1+ "
and V—J'—————I_—’——dx—“‘x T o dx
Yi1Y2-Y1 Y2 e’ (2e7%) -e™ (eV)
e2x

1+ X e2x

= sy dxm [ dx
2e” - e™ e’ (1+e¥)

=-.-e (l+e) J.(—_1+e)dx

=J‘(e"‘— e’ de—--e +log (™ +1)
e

Therefore P.I=exlog (e + 1)+ e¥{-ex+log (e*+1)}
=exlog (ex+ 1) -ex + e log (ex+ 1)
Therefore, complete solutionis y = C.F + P.I
or y=Crex+ Cre>x+exlog (ex+ 1) -ex + exxlog (ex+ 1)
Example 16. Solve by the method of variation of parameters

dy _,dy
dx? dx

=e* sin x

(U.P.T.U. 2003)
Solution. Here auxiliary equation is m? - 2m =0

= m(m-2)=0
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m=0,2
CF.=C1+ CyeXx

Herey1 =1, y2 =e

PlI=uy; + vy2

where

and

2x

-X -e* sinx- e
u= j 1 = 1 dx = J' 2x 2x
Y1Y2-Y1 Y2 1(2e77) - 0(e™)

1 e* sin x dx
2

1 ——ex—— (sin x - cos x)
2 (1) +@)

1 .
—Ze (sin x - cos x)

V= I——————————X Y1 dx

Y1¥2 =¥1'Y2
_ e*sinx1 1 ¢_, .
= jl 2 -0 (@) =5 J-e sin x dx
1 (-sin x - cos x)
2 (-1 + (1)

(sin x + cos x) = - (sin x + cos x)

2 2

putting the values of u and v in (2), we get

Pl= e—(sin x —cosx)1 -
-4

?4—(sinx—cosx+sinx+cosx) =

=X

e
4

(sin x + cos x)e?*

=X

€

sinx

Hence, the complete solutionisy = C.F + P.I

X
y=C, +C, ez"——ei—sinx

Example 18. Solve by method of variation of parameters
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d’y ,, dy
—= +2 = +y=e*logx
dx? dx y &

Solution. Here auxiliary equationis m2+2m +1=0
= (m+1)2=0
= m=-1,-1
CF=(G+Cx)ex
Herey1=ex y2=xe™
PI=uy; + vy

where u= I——_—lxzz—‘—— dx
YiY2-Y1 Y2

dx

_ _[ -e* log x. xe™*
_Xe—2x + e-2x + Xe—2x

= J.M dx=—J.x log x dx

-2x

e
x> x? 1
= -1 + — —d
2 o8 X J‘2 X
2 2
=-—logx+ —
and v=J———>l(—¥—1—’——-dx
YiYa=V1 Y2
_ J'e loi); e dx
e
=Ilogxdx

=xlog x - Il x dx
X

=xlog x - x

Putting these values of u and v in (2) we get
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2 -x 2
P.I=-X§ logx +e™ XT+X2 e™ log x - x* e~

2 _~X
or pI=2% logx——3—x2 e’
2 4

Hence, complete solution is y = C.F + P.I

2 -x
or y=(C1+C2x)e"‘+Xe

3 2 -
log x - = x* e
8%
Example 19. Using variation of parameters method, solve

d’y , 5 ¥
x? =L +2x =L -12y = x log x
dx’ ax Y B
(U.P.T.U. 2004)
Solution. On changing the independent variable by substituting x = ez or

z = logex and di = D, the differential equation becomes
z

(DOD-1)+2D-12}y=2ze*
or (D2+D-12)y =z e
The auxiliary equationism2+m-12=0
= m=3,-4

CF=Cie¥2+ Cyet

or CF=Cix3+(C; l4 1)
X
1
Herey, =x3,y, = —
X
P.L = uy; + vy2 ~ ' )
where u= J.—-.Z("b'.‘—' dx
Yi¥o = Y1 Y2
x log x- x™* ~ x2 log x
='_[ 3 5 2 (4 _"_‘.—_de
x7 (-4x7) -3x° (x7*) -7x
_1 J-logx dx
7 X
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and v= Xy dx

Y1i¥2' - ¥1'Y2

Sy

. 3 -
- J‘il‘ﬁ"_zi dx= L [x logx dx
-7 x" 7

]
1
|
-
|
(]
oQ
bed
|><
~
1
|
|><
~3
o,
| SO

It
vlklx
O ~
VRN
N

1

—t

)
QaQ

x
~—

putting the values of u and v in (1) we get

7
PI= IlZ (log x)* x> + xl x (-;— - log x)

3 3

X X 1
=1 + — | = -1
14(ogx) 49 (7 ogx)

Therefore, the required solutionisy = C.F + P.I

C x> x> x°
=C; x>+ 2+ — (logx)*+ —-—1o
or y 1 X & 14(ogx) TN g X
1 3 C2 X3
or =C,+——|x+ =+ —logx(7logx-2
y(lmj o 98g(g )
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SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS WITH
VARIABLE COEFFICIENTS (Solution by Changing dependent and
independent variables)

INTRODUCTION

The general form of linear differential equation of the second order may be
written as

dy ,pdy

o dx +Qy =R (1)

where P, Q and R are functions of x only. There is no general method for the
solution of this type of equations. Some particular methods used to solve these
equations are, change of independent variables, Variation of parameters and
removal of first order derivatives etc. As this kind of differential equations are of
great significance in physics, especially in connection with vibrations in
mechanics and theory of electric circuit. In addition many profound and beautiful
ideas in pure mathematics have grown out to the study of these equations.

Method I: Complete solution is terms of known integral belonging to the
complementary function (i.e. part of C.F. is known or one solution is
known).

Let u be a part of complementary function of equation (1) and v is remaining
solution of differential equation (1)

Then the complete solution of equation (1) is

y=uv 2

dy _ du _ dv d? d’u ,du dv d’
=v—+u-—

and =L =v=2 +2 2 oy

= ey
dx dx dx dx? dx dx dx dx?

Putting these values in equation (1) then, we get

2 2
d 2d_ud_v+uﬂ+P(vd_u+ dV)+qu R
dx dx dx dx? dx dx
d*u du d’v dv du dv
— +tP — + — +P—+2—= — =R 3
or v [dx dx Qu } [dx2 dx} dx dx ®)
Since u is a part of C.F. i.e. solution of (1)
d*u du
+P — + 0
o P ax Tt
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Hence equation (3) becomes

dx? dx dx dx
2
or g.!-{-(P-}-.?..@E.jéX:B (4)
dx? u dx/) dx u
2
Let Ei-— =z,sothat£i—‘2/ = —CE
X dx dx

Equation (4) becomes

dz ( 2 du) R
—~+|P+Z —|z=2,
dx u dx u

which is linear in z, Hence z can be determined

We obtain v, by integration the relation —32 =z
X

= v=_“zdx+C1

Therefore, the solution of (1)is y=u [ Iz dx + C1:|

ie. y=uv

Remark. Solving by the above method, u determined by inspection of the
following rules

1) fP+Qx=0,thenu=x

2 If1+P+Q=0,thenu=ex

®) If1-P+Q=0,thenu=ex

“4) If1+ L % =0, then u = eax
a a
(5) If2+2Px + Qx2=0, then u = x2
. 6) If m (m -1) + Pmx + Qx2=0, then u = xm
Example 20. Solve y" - 4xy' + (4x2 - 2) y = 0 given that y = e is an integral
induced in the complementary function.
(U.P.T.U. 2004)

Solution. The given equation may be written as
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d’y . dy . .,
Y Ly @ -2)y=0
dx? xdx (i )y

HereP=-4x,Q=4x2-2,R=0

d
and u=e* , so that d—u =2 xe¥

X
Let y=uv :>y=e"2v 1)
we know that
2
dx? u dx/ dx
2
= d—‘27—+ %2xe" - 4x -d—v=0
dx e* dx
d%v
:> ——— —
dx?
dv
= — =C
dx
= v=Cix+C;

Hence the complete solution is y = e v

or y= e Cx+C,)
Example 21. By the method of variation of parameters, solve the differential
equation (U.P.T.U. 2004)
2
dy, (1 - cot x) gl - y cot x = sin®x
X

dx?
Solution. Here P =1 - cot x, Q = -cot x
Therefore1-P+Q=1-(1-cotx)-cotx=0
Thatis y = exis a part of the C.F. putting y = ve-

_‘1}’_ =-ve X +e¥ éX

dx dx
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2 2
and 9-% =¥ d—;— - 2e7% dv +ve™
dx dx dx

on putting these values is the given differential equation, we have

d’v dv

— -(1+cotx) — =0

dx? ( )dX
or 3—5—(l+cotx)p=0 wherep=%
= £i£=(1+c:otx)dx

on integrating we get

log p=x + log sin x + log C;

= p=Ciexsinx
Substituting for p

% =C, e* sinx
or dv = C; exsin x dx
Integrating

v=C, |e"sinxdx+C,

=C, %e" (sinx - cos x) + C,

Therefore, solution of the given differential equation i.e. C.F. is given by

y=ve ™ =C, % (sinx-cosx)+C, e*
Let y = Au + Bv be the complete solution of the given differential equation where
A and B are the functions of x, i.e.

y = A (sin x - cos x) + Be~* (1)
Differentiating on both sides

dy

— =A(cosx+sinx)—Be"‘ + -% (sin x - cos x) + d_B e
dx dx dx

-X
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Let us choose A and B such that

d—A-(sinx-cosx)+ d—Be"‘ =0 (2)
dx dx
= dy = A (cos x + sin x) - Be™
dx
2
and 9—}21 _da (cos x + sin x) - a8 e + A (-sin x + cos x) + Be™
dx dx dx
. d2y dy . . .
putting these values of 2 dx and y is the given equation, we get
x*  dx
da (cos x + sin x) - a8 e = sin’x 3)
dx dx

on solving equation (2) and (3), we get

A=——1— cosx + C,
2

and a_1 e* (sin x cos x - sin’x)
dx 2

ex
=7 (sin 2x + cos 2x - 1)
on integration, we have
e’ e
B= 2 (3 sin 2x - cos 2x) - T +C,

putting the values of A and B in equation (1) we get

y= (—% cosx + Cl) (sin x - cos x) [—;—6 (3'sin 2x - cos 2x) - 34— +C2J e’

-1 cos x sin x + lcoszx+C1 sinx - C; cos x + isian- L cost-l+C2 e
2 2 20 20 4
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or y=Ci(sinx-cosx) +Crex - 1—16 (sin 2x - 2 cos 2x)
Method II. Normal form (Removal of first derivative)

d’y , p dy
Let — +P L+ =R 1
dx? dx Q @

putting y = uv, we get

2 2
V[Q +P§—E+Qu]+u[¥ +Pﬂ]+2E v _g

dx? dx x? dx dx dx
2 2
- d_\27+(gd_u+P]ﬂ+v _1_d_u+£d_u+Q _R @)
dx u dx dx u dx? u dx u
But the first order derivative must be remove
SO zEiE«FP=O = d_u=_lde
u dx u

= logu=-.[§— dx

P
= u= e-I2 ¢
. du _ Pu d’u _ 1 du dp
Since — = = —=-= 1P — —_—
dx 2 dx? 2 dx dx
2 2
= .C_l_u=_1 P(_P_u)-{- @:.I_)_u_gg?.
dx? 2 2 dx 4 2 dx
d?v P2 1 dP P? R
F 2) —— —_——— - — = —
rom (2) dx? [ 4 2 dx 2 Q] u
d?v 1dP P?)_R
= — Q- —-_|==
dx? 2 dx 4 u
d%v R
= — tIv= — 3
dx? v u ®)

This equation is called normal form of equation (1)
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Example 22. Solve

2
’37)2,—4)(%"'(4)(2 -1)y=-3¢e* sin2x

[I.A.S. 2000, U.P.T.U. (C.O.) 2004]

Solution. Here P=-4x,Q=4x2-1, R= ~3eX sin 2x
2 2 1 1 2
so 1=Q-= " - - P?=4x® -1- = (-4) - (-4x)

2 4

=4x2-1+2-4x2=1
1 1

u=e? dex o j’(-4x) dx

=e2 dex =ex2

Then substituting these values in the equation

2
d—‘; +Iv= E, We have
dx u
2 X2 s
4V =B ST 5 gin 2
dx e

its C.F = C; cos x + Cy sin x

and P.I=—Dz 1 2sin2x=-3 YR sin 2x
= sin 2x

Thus v =C; cos x + C; sin x + sin 2x

Therefore required solution is y = uv

or y = e (C, cos x + C, sin x + sin 2x)

Example 23. Solve
dly
dx?

by removing first derivative

cax Y oh @ iz)y=e®
dx
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Solution, Here P = -4x, Q = 4x2 -3, R =X

1 dP P2 2 1 1
[=Q- = — - — =4x* -3 - = (-4)-= (-4x)?
Q2dx4x 2()4(x)
=4x2-3+2-4x2=-1
1
w=e-Edex

e-—% I(—4X) dx - e2 J‘x dx - ex2

Then substituting these values in the equation

d?v R
— +1lv=—, we get
dx? u &
dx? e"2
2
or 3—‘2’—v=1
X
its CF=Ciex+Cyex
1
and PIl= 1=-(1-D%*11
D? -1 ( )
=-(1+D2+D4+...)1
=1

Thusv=Ciex+ Crex-1

Hence the general solution of the given equation is
y =uv

or y= e (C,e"+C,e™* -1)

Method III. Change of independent variable

2
consider %{%’— + P% +Qy=R

Let us change the independent variable x to z and z = f(x).

112

@)
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Then 91 = f‘_}i dz (2)
dx dz dx
9fz=d(2z2_91d2 (E‘E)zﬂ ®)
dx? dx \dz dx dz dx? dx) dx?
2
Putting the values of dy and 4y in (1) we get
dx dx?

dz? \dx dz dx? dz dx
d*y (dzj2 pdz d’z
— |2 bl Bat SN R
or dz? \dx dx dx? Q=
r&- 5
2 dx 2
or dy L& &)dy, 9 R
R ) I < B
dx dx dx
d? d
= a‘;}zi'*Pl H‘Z""Qly:Rl @)
dz d’z
P dx dx? R
where P1=w,Q1=%de =

(&)
dx
Equation (4) is solved either by taking P1 = 0 or Q: = a constant
Example 24. Solve by changing the independent variable

2
x LY A gy (U.P.T.U. 2002, 2003)
dx® dx

Solution. Given equation is

d%y 1 dy
—_— - + 4x°2 1
dx?  x dx x¥= @)

Here P = —l,Q=4x2 and R = x*
X
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On changing the independent variable x to z, the equation (1) transformed as

d? d
d—zzx+Pl d_jzl*'Qly:Rl 2
2
where Q, = Q 5 = Ax 5 = constant = 1 say
&) (&)
dx dx
2
or (EJ = 4x?
dx
= % =2x
dx
= z=x2
2
= (_i._?. =2
dx?
2
pdz , dz {2+( 1)2x}
dx dx? X -
P > 5 =0
(QEJ 4x
dx
__ R _x X _z
' (dz)z axt 4 4
dx

on putting the values of P1, Q1 and R; in (2), we get
d%y

ey v=2
dz? y 4
or (D2+1)y=E
4
itsAE ism2+1=0 = m=+i

CF=Cicosz+Czsinz

or CF=Cjcosx2+ Cysin x2
1 z 1 2\-1
and Pl=—— —=—-(@1+D z
D2+1 4 4(
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AN

(1-D? + .. )z

>N

x
4
Hence the complete solution is y = C.F + P.I

2
. X
or y=Cicos x2+ Cysinx2 + ——

Example 25. Solve the following differential equation by changing the
2

independent variable x 3—}2, +(4x* - 1) gx +4x°y =23 (U.P.T.U. 2006)
X X

Solution. The given differential equation may be written as

dzy 1 dy 2. 2
5;5+(4x—;)a—;+4xy—2x 1)

Here P=4x——1—,Q=4x2,R=2x2
X

on changing the independent variable x to z, the equation (1) is transformed as

d? d
d—zZ+P1 E‘Z’+Q1Y=R1 2
2
where Q= Q 5 = ix > = 1(constant) say
| =) (&)
dx dx
= —QE = 2x
dx
= z=x2
- d’z _
dx?
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dz d?z
e 2 2
- dx  dx? =8x —2+2=

2
( dz )2 4x?
dx

Putting the values of P1, Q; & R; in (2), we get

d d

AL A

. its Auxiliary equationism?+2m+1=0
= (m+1)2=0

= m=-1,-1

# CFE.=(C+Cz)e?
=(Ci1+ 2 x?) e™

and Pl= —-—1—— (lj

1
eOZ

2 (02 +20+1 2

. Complete solutionis y = C.F + P.I
= (C1+Caxd) e + %

2
. Example 26. Solve (—i—-}z—’ vootx W+ 4y cosex’x =0
dx dx

Solution. Here P = cot x, Q = 4 cosec?x and R = 0 on changing the independent
variable x to z, the given differential equation transformed to

d? d
o e T
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dx _ dx? __Q
(&)
dx

’ 1
Casel. Letus takeP; =0

iz, &z

where P, =

sz+dzz
=+ 5
_dx  dx® 2dx =OorPgE+—C~I——f—=O
(dz) dx dx
dx
2

= d—f+co'cxiz-=0
dx dx

ut E:Vﬁ=d_v
p dx  dd  dx

Using these, (2) becomes _:il_v +(cotx)v=0
X

= v -cot x dx
v

= log v = -log sin x + log C = log C cosec x
= v = C cosec x

dz

— = ccosec X

dx
or dz = (C cosec x) dx

= z=c10gtan§

Case II. Now, let us take Q1 = constant
2
Q, = Q > = 42cosec 2x = —%— which is constant
(dz) c® cosec’x ¢
dx

Hence the equation (1) reduce to
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dy _dy . 4
—= +0—=+ =vy=0
dz? dz czy
dy 4 _ 4
or E'z—+c—2y—0 '.'PI“O,Q1=—C?
4
= (D2+C—2)y=0

. s - 4 .
its auxiliary equation is m? + — =0 => m-= #i
c

2z .2z
CF=c, cos — +c, sin —
c c

= y = €1 €Os (2 log tan —)2(—) + Casin (2 log tan —;E)  z=clog tan %

SIMULTANEOUS LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS:

In Several applied mathematics problems, there are more than one dependent
variables, each of which is a function of one independent variable, usually say
time t. The formulation of such problems leads to a system of simultaneous linear
differential equation with constant coefficients. Such a system can be solved by
the method of elimination. Laplace transform method, using matrices and short
cut operator methods.

Example 27. Solve % +y=sint, (—i}t’— + x = cost
x(0)=2,y(0)=0 (U.P.T.U. 2004)
Solution. We have
dx
— +y=sint 1
dy + x = cost (2
dt
Differentiating (1) w.r.t. 't' we have
d’x  dy _
*a—t-i- + Tj—t— = cost (3)
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Using (2) in (3) we get

d2X . 2

—-x=0 = D -1)x=0

de? ( )
its auxiliary equation is
m2-1=0 = m=z%1

x=Cret+Cet “4)
= 9—{=Cle‘—C2e"

dt

putting this value of _c(%(_ in (1) we get

y=sint-Ciet+Cyet ®)
Using given conditions
om (iv +C, =
ffzom év))-((jjl1 +((::22 =i)} =6 =6 =1
* putting these values of C; and C; in (4) & (5) we get
x=ett+et
and y =sint - et + et

is the required solution

Example 28. Solve % +4x+3y=t

%{- +2x + 5y = ' (U.P.T.U. 2006)
Solution. The given equation can be written as
(D+4)x+3y=t 1)
2x+(D+5)y=¢et (2
operating (D +5) on equation (1) and multiplied equation (2) by 3, we get
(D+5)(D+4)x+3(D+5) y=(D+5)t 3)
6x+3 (D +5)y=3et 4)

Subtracting (4) from (3) we get
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(D2+9D +20-6) x =1+ 5t - 3et

= (D2+9D + 14) x =5t -3et+ 1
Here auxiliary equationism2+9m + 14 =0
= (m+7)y(m+2)=0
= m=-7,-2
CF=Cet+Ce2
and PI= —5—1—-— (5t-3e' +1)
(D® +9D + 14)
2 t
_5 1+ D° +9D _ 3e + 1 ot
14 14 (1P +91)+14 (0 +9(0)+14
t
=3 (1_9_Q]t_3L+l
14 14 24 14
_ 5 ( 9 ) et 1
= - -2+ —
14 14 8 14
t
= Pl= 2 - S.. - ﬂ_
14 8 19
t
X—(:1 e'7t +/C2 -2t + E - .e___ - ﬂ.
14 8 19
t t
Now (D +4) x=-7Ciet-2C et + R +4C, et + 4C, e'2t+Et—S——
14 8 2
t
= (D+4)X=-—3C1e‘7t+2C2e'2t—Si"'gt-z
8 7 98
Using this value in equation (1) we get
Jy=t+3Ce7t-2Ce2t + —5- e' - !.— t+ z
8 7 98
5 9
= = Zt+C et -ZC e+ et + =
Y ! 2 24° %8

Thus the required solution is
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t
X=Cle-7t+C2e-2t+_5_t_e__ﬂ_
14 8 19
1 2 5 9
and y=--t+C,e”' - 2C, e+ —e'+ =
Y=ozttt 3 2 2#° " 98

Example 29. The equation of motion of a particle are given by % +wy=0,

% - wx = 0. Find the path of the particle and show that itis a circle.

(U.P.T.U. 2009)
Solution. Writing D for ad;, the equations are
Dx+wy=0 (1)
and -wx+Dy=0 (2)

Differentiating (1) w.r.t. 't' we have
D2 + wDy =0 = D2w + w (wx) =0 = (D2 + w?) x = 0 using (2)

= x = C; cos wt + Cz sin wt
Putting this value of x is (1) we have y = L % (C; cos wt + C, sin wt)
w

we get y (t) = C1 cos wt + Ca sin wt 3)
and  x(t) = Cacos wt-C; sin wt “4)
Squaring (3) and (4) their adding, we get

xX*+y*=Cl+CZ
or x2+y2=R2

which is a circle

Applications to Engineering Problems
INTRODUCTION

Differential equations have many numerical applications in Physics, Chemistry,
electrical engineering, mechanical engineering, biological sciences, social sciences
etc. In this section, we discuss some applications.
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Simple Harmonic Motion

A particle moving in a straight line, is said to execute simple harmonic motion, if
its acceleration is always directed towards a fixed point in line and is
proportional to the distance of the particle from the fixed point.

Since the acceleration is always directed towards a fixed point, the differential
equation of the motion of the particle is given by

d2x
a‘t? = —W2X (1)
W2x €——
Al } — A
O€¢<— x—>P
€——mmmm e A - >

where x is the displacement of the particle from a fixed point o at any time t.
The solution of (1) is

x = C; cos wt + C; sin wt (2
If the particle starts from rest at a point A, where
OA = ai.e. (x = a, when t = 0) then, from (2), we get

Ci=a
Differentiating (2) with respect to t, we get

v= % =w (-C, sinwt+ C, cos wt) (3)
. dx
Since I =0, at t =0, from (3), we get

O0=C
Hence, the displacement of the particle is

x = a cos wt (a is amplitude) 4
such that
. dx .
Velocity =v = It -aw sin wt

= -wva? - x? (3)
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Equation (5) gives the velocity of the particle at any time t, when its displacement
from a fixed point O is x. Particle time (time for one complete oscillation) is

denoted by T and is given by T = —2—7—t The number of complete oscillations per
w

second is called the frequency of motion and we have n = %V—-

|

In the figure O is the fixed point
we have OA =a

The acceleration is directed towards O. The particle moves towards O from A.
The acceleration gradually decreases and vanishes at O. At O particle acquired
maximum acceleration. Under retardation the particle further moves towards A'
and comes to rest at A' such that

OA'=0A
The point O is called mean position.

Example 30. A point moves in a straight line towards a centre of force
p/ (distance)?, starting from rest at a distance a from the centre of force. Show that
the time of reaching a point distance b from the centre of force is

T Ja® - b? and that its velocity is Y— ‘[_ Ja? - b?
H

(U.P.T.U. 2001)

Solution. Let O is the centre of force and let a point moves from P towards the
centre of force O.

P o )
X=a x=0
e a )
dt dt
The equation of motion is
d?x  -p
Froiiec M
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on integrating, we get

2
[ R

dt -2x X
dx n
= — =% [= +C 2
dt x2 @)
AtP,%=Oandx=a
dt
= o= f%+C = C=%
a a
dx VAT a? - x?
From (2), — =% ,|—= - &= =+ /p ———— 3
@ =t -7 Tk 3)

The velocity atx =b s

v=;t\/ﬁ———\/?
S

(As the point P is moving towards O)
dx Va? - x?
From () g =R T

Xa

1
i Va2 o2

= dt= dx

on integration, we get

t= 2 Ja? -x2 +C 4)

I

AtP,t=0,x=a,in (4), we get
C=0
Putting this value of C in (4), we have
t= 2 Va? - x?
N
Atx=Db
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t= -2 J@ -b?)

T

Vertical Motion In Resisting Medium

Example 31. A particle falls under gravity in a resisting medium whose resistance
varies with velocity. Find the relation between distance and velocity if initially
the particle starts from rest.

Solution. Let m be the mass of a particle falls from rest from a
fixed point O. Let P be the position of a particle such that OP
= x. The forces acting on the particle at P are:

(1) The weight mg of a particle acting vertically downwards.

(2) The resistance m kv acting vertically upwards.

Now by Newton's second law of motion the equation of the

T or

motion of the body
md?x _ K
el mg - mkv
d’x
or el =g-kv
dv
2 =p_k
or Vi T8k
S _dv_dvodx
dt* dt dx dt
vdv _ dx
g-kv
= T vr gl 4y -ax
k g -kv
= v, 8 dv = dx
k k(g-kv)
Integrating, we get
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-§+ % (-%J log (g - kv) = x + C

or -i(‘i-%log(g-kv)=x+c 1)
Initially, at point O, x=0,v=0
= & logg=C

2

putting this value of C in (1) we have

v
-E-%log(g—kv)=x—lf—2logg
v g g-kv _

= R E Ty X

Example 32. A 4 kg object falls from rest of time t = 0 in a medium offering a
- resistance in kg numerically equal to twice its instantaneous velocity in m/sec.
Find the velocity and distance travelled at any time t > 0 and also the limiting
velocity.

(U.P.T.U. 2007)
Solution. Air resistance = 2v
Upthrust =2 x 4v = 8v Asm = 4kg

By Newton's second law of motion the equation of motion of body

d?x
— =4¢ -8v
a2 B
= d_z_x. = - 292(_
FTERR T
d?x dx
= —_—+t2 —= 1
de? a  ° @)
2
Let i)i .z p = .d_;( = .d_p
dt dt dt

.. From (1), we get
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dp

—_ 2 =

at P78
which is linear in p.

d
its LF = ef2 fo 2t

. So, the solution of equation (2) is

pel = J‘g e’ dt+C= % e +C

Att= 0,% =0 which gives C = &
dt 2

From (3) %% = % (1-e2)

= velocity = % (1-e)
Again integrating above equation, we get

X=.g£+—i-e—2t+cl

Att=0,x=0 = o=8+C, = C=-g/4

4
gt . 8 2
From (4), x= 2 + & (e -1
rom (4), x > 4(e )
= distance = 8% + & e -1)
2 4

and Limiting velocity = (tlim %%j = lim —g— (1-e?)

N |09
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Example 33. A mass M suspended from the end of a helical spring is subjected to
a periodic force f = F sin wt in the direction of its length. The force f is measured
positive vertically downwards and at zero time M is at rest. If the spring stiffness
is S, prove that the displacement of M at time t from the commencement of

CL . . . S
motion is given by x= sin wt - — sin pt),where pt= v and

__F
M (p* - w?) P
daming effects are neglected.

(U.P.T.U. 2000)

Solution. Let x be the displacement from the equilibrium position at any time t
then the equation of the motion is

2
M LX = 5x+ Fsinwt
dt
2
g—X-!-—S—x=£sinw’c
d> M M
d>x , , _F
or — +tp°x=-—sinwt 1
2 Pty (1)
S _.»
As — =
( M p)
The AE ism2+p2=0= m=zip
C.F. = C;cos pt + Cy sin pt
and Pl = L [f—— sin wt)
D? +p* \M
F 1 .
= — ———— sinwt
M—wz-&-p2
. x=Cjcos pt+ Casin t+£——1—sinwt (2
R ¥ ‘

Initially, att=0,x=0 .. C;=0
. Differentiating equation (2) w.r.t. 't' we get

& =-pC, sinpt+ pC, cos pt+ %

2 cos wt
dt pT-w
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dx
Att=0, — =0
dt
F w
pC2+_I\7[_ p2_w2 =0
or C2="'X 2F 2
P M(p” -w’)
From (2), we have
x=--—v!—F—sin t+—I—:— sin wt
PME-w) P M p-w?
or x=——F—————— [sin wt-ﬂsinth
M (p* - w?) p

Problems Related to Electric Circuit

There are some formulae which are useful to solve such type of problems

._dq
1) i= —2
M i=-
(2) Voltage drop across resistance R is Vg = Ri
(3) Voltage drop across inductance Lis V; =L —g—:

(4) Voltage drop across capacitance Cis V. = %

Electro-Mechanical Analogy

The following correspondences between the electrical and mechanical quantities
should be kept in mind
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Mechanical system

Series Circuit

Parallel circuit

Displacement

Force or Couple

Current i

Voltage E

Voltage E

Current i

Mass m or M.L Inductance L Capacitance C
Damping force Resistance R Conductance 1/R
Spring modulus Elastance 1/C Susceptance 1/L

Example 34. An uncharged condenser of capacity C is charged by applying an
t
em.f. E sin —==through leads of self-inductance L and negligible resistance.
Jic 8 gug
Prove that at time t, the charge on one of the plates is

lzg[sin ¢ - ¢ cos t]
2 JLC JLC VvLC

.(U.P.T.U. 2003)

Solution. If q be the charge on the condenser, the differential equation of the
circuit is

2
L ﬂ + i = EO
dt* C
d’q  q ot ot
L — + = =Esin AsE  =Esin —
a? C JLC JLC
d?q 1 t
2+ _—q==sin —— 1
o a2 ¢ L Ic @
Here auxiliary equation is m?* + 1. 0
LC
- m= :t ..__1___
JLC
1
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Equations Reducible To Linear Equations with Constant Coefficients

PI:___,l__ Esin_i_
‘ [D2+ 1) L vLC
1LC

(Case of failure)

t 1 . =X
3 Vo SINnaX = — CO0S ax
JILC D? + a2 2a

e

——'L—‘ CcOSs
21
JIiC
-tv1LC oS t
2 JIC

2 L) JIc

Therefore, the solution of the equation is

q=C 05— +C sin——L-E\/(é_)cos—t— 2
TV P Ve 2 L) T ViIC

Att=0,q=0..C =0

Differentiating equation (2) w.r.t. "t" we get

_E
L

9_&:_(:1 sin L. Ca Cos t +—E-:i [S)sin(———t )——L «E\Ecos :

dt VLC JLC JLC JLC 2 L LC LC 2 VL JLC
s dq _ _

Initially Et— =0,whent=0

C, E\/E EC
-Z . J==0 = C, = —
JLC 2 VL 2 2

From equation (2)we get

EC . t Et (C) t
— Sl - — | COS ———

= n

1 2 JL 2 L JLC

or = —E—g— (sin t - t cos t J
1773 e Jic Jic
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Example 35. The equation of electromotive force in terms of current i for an
electrical circuit having resistant R and a condenser of capacity C, in serires is

E=Ri + J%— dt. Find the current i at any time t, when E = Eo sin wt

(U.P.T.U. 2006)

Solution. The given equation is
Ri+ [ dt=Eosinwt as E=Eosinwt

* Differentiating w.r.t. 't|, we get

Rgl+ —I-=Eowcoswt
dt
= $+L=Eowcoswt (1)
dt RC R

which is a linear differential equation

jl dt
its [F=e'RC
L
The solution of (1) is
£ E,w
i.eRC = I o= coswt. e/F¢ dt+ C,
R
t/RC
- Eow © [——1—coswt+wsinwt}+C1
R 1 2 [RC
R’C?
ax
Iea" cos bx dx = ——— (a cos bx + b sin bx)
a“+b
wE, RC? [ 1 . -t/RC
=—20_—— — | — coswt+wsinwt| +ke™"
> T wiRC [RC o }

Example 36. The damped LCR circuit is governed by the equation
2
L$Q  pdo 1o

dt? dt C
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where L, C, R are positive constants. Find the conditions under which the cirucuit
is overdamped, underdamped and critically damped. Find also the critical
resistance.

(U.P.T.U. 2005)

Solution. The given equation is

2
Lg_g+R_c.i_9+_Q=
dt? dt C
d’Q dQ 2
———+2k =( 1
or o Tt +wQ (1)
Where 2k = R and w? = 1
L LC

Here auxiliary equation is
m?2+ 2km + w2=0

= m=—k:t\/k2 -w? 2

Case 1. when k<w ie. — , the roots of A.E. given by (2) are imaginary.

2LJ“

The general solution of (1) is

Q=e™ (C, cos (W? - K2) t+C, sin {J(w? - k%) t)

where C; and C; being arbitrary constants.

which is greater than 2n
w

Time period = _m
[w? - K2

Thus the effect of damping increases the period of oscillation and motion

ultimately dies away. In this condition when R the circuit is under

1
2L JLC
damped.

Case II. When k = w, then roots of A.E. (2) are equal, each being equal to -k. The
general solution of (1) is

Q=(C1+Cot) ekt

In this case charge Q is always positive and decreases to zero as t — . In this
case circuit is called critically damped and the resistance R is called critical
" resistance.
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Thus k=w =

= R=2\/E
C

which is required critical resistance.

R
2L

Al

Case III. when k > w, the roots of A.E. are real and unequal.

Also, the roots

m = -k + Vk? - w? and m = -k-vk? - w?

are both negative. The general solution of (1) is

frx+ m}t+ c fr- i ol

Q=C1e . €

In this case also change Q is positive and decreases to zero as t — o, since
exponential terms having negative powers approach to zero. In this case the
circuit is called overdamped.

Q k> w
k=i
o) \/ \/ ' v
k<w

Example 37. The voltage V and the current i at a distance x from the sending end
of the transmission line satisfying the equations.

g - E gy

dx dx
where R and G are constants. If V = Vo at the sending end (x = 0) and V = 0 at
receiving end (x = I), show that
sinhn (I - x)}
V=Vo{————=
© { sinh nl
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Solution. We have -Eldy— = Ri

X
and —éi— =GV
dx
whenx=0,V=V, whenx=1,V=0
From (1) and (2), we have
dx dx R
2
= 9——\2] =RGV
dx
= dz_V -RG)V=0
. dx2
d
or (D2-RG)V=0,D = —
dx

Here auxiliary equation is m? - RG =0

= m = tn, n2 = RG

The solution of (3) is V = C; enx + Cy e-m

where C; and (; are arbitrary constants.

putting x =0 and V = V, is (4), we get
Vo=Ci+

Again putting x =land V = 0 is (4), we get
o=Cred+ Cre (5)

Solving equations (5) and (6), we have

\Y -V, e
G = o G2 = 2 eznz
1-e 1-e

Substituting the values of C; and C; in (4), we get

n
\Y V. e
enx - Q e nx

V= ¢

1 - e2l’ll l - e2nl
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B Vo (enx _ e2nl-nX)
B 1-e™
V, (el -™) _ g-(nl-my {sin hn (] - x)}
or V=-2 =V {——
e _e™ sin hnl

Example 38. An inductance of 2 henries and a resistance of 20 ohms are
connected in series with an emf E votts. If the current is zero when t = 0, find the
current at the end of 0.01 sec if E = 100 volts, using the following differential
equation.

(U.P.T.U. 2008)
L él +iR=E
dt
. di .
Solution. we have L X +iR=E
or El_l. + E i:: .I::. (1)
dt L L

Equation (1) is linear differential equation of first order.

R
IF= ejf * e(R/L) ¢

—oH R

E= 100 volts

. Solution of (1) is

LR - IE o®/ g+ C
L

where C is an arbitrary constant

: E
or je®Mt = & R/ 4 o
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R
Initially i = 0, when t=0 .. From (2), we have
c--E
R
.. From (2), we have i = _E_ [1 - e (R/L) t] 3)

on putting E = 100 volts, R = 20 ohms and L = 2 henries in (3) we have

20
i=_1_(slq [l—e_zt}=5(l—e'wt)

Att=0.01sec,i=5(1-e01)
= 0.475 amp (approximately)
Example 39. In an LCR circuit, the charge q on a plate of a condenser is given by

r4q,pda, g

P It =Esin pt.The circuit is tuned to resonance so that

p= 1%, if initially the current i and the charge q be zero, show that for small

values of T the current in the circuit at time t is given by i sin pt

(U.P.T.U. 2004) (C.O.)

Solution. The given differential equation is

d*q dq , q :
L99,r%Y9, 9 _Egnpt 1
@ o at ¢ osmp )

Here AE. is Lm? + Rm + -é= 0

_-R+R*-(4L/C) R .1 [R® 4

= =__i_._ — s —
= m 2L 2L T 2\1Z T L

2
= m=- R t 1 J-—-—é— neglected R—2 as R is small
2L 2V CL L LC
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= m=-—R—:t;=-—13~ii [since 2=L iven]
oL Jar 2L P P =1cé
C.F = eR/2L (C; cos pt + C; sin pt)
2,2
ButeRv2 -7 Rt 1 RW®

2L 12 412
Rt 2
=1~ — neglecting — etc
2L & &

CFE.= (1 - ZELE) (C, cos pt + C, sin pt)

where C; and C; are arbitrary constants

P.I=—————1-————1—EsinptwhereDE 4
LD? + RD + — dt
C
=K ! 1sinpt
L(-p*)+RD+ =
-p°) c
=E——1—sin t since p? = —
RD P P 7 1c

E -E
= — |sin ptdt= — cos pt
R % PR P
Hence the general solution of (1) is given by

q= (1 - %) (C, cos pt + C, sinpt) - E?Ii cos pt )]

Differentiating (2) w.r.t. 't' we have
i= % = (1 - %J (-pCq sin pt + pC, cos pt) - 2R_L (C4 cos pt+ C, sin pt) + I}i— sinpt  (3)
Initially given thatt=0,q=0

- (2) gives

and (3) gives
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2pL.  2Lp

Now putting values of Ci and C; in (3), the current i in the circuit at any time t is
given by

. Rt E . E R | E E E .
1= (1— —iz) (-E sin pt + z—p—L— cospt)— T (p_R cos pt + 2Lp2 smpt) + i{—smpt

sin pt - ERt
4

ER .
12 cos pt - W sin pt

=t
2L

2L
third terms

BEAM

A bar whose length is much greater than its cross-section and its thickness is
called a beam

2
.= Et sinpt  since % is small, also % = % (f) ,s0 neglecting second and

Cantilever: If one end of a beam is fixed and the other end is loaded, it is callled a
cantilever.

Bending of Beam: Let a beam be fixed at one end and the other end is loaded.
Then the upper surface is elongated and therefore under tension and the lower
surface is shortended so under compression.

Bending Moment: Whenever a beam is loaded it deflects from its original
position. If M is the bending moment of the forces acting on it, then
EIl
M= = 1
= )
where E = Modulus of elasticity of the beam
I = Moment of inertia of the cross-section of beam about neutral axis

R = Radius of curvature of the curved beam
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2
Thus equation (1) becomes M = EI S—Z
X

Example 40. A beam of length I is clamped horizontally at its end x = Oand is free
at the end x = I. A point load W is applied at the end x = I, in addition of a

uniform load w per unit length from x =0 to x = é Find the deflection at any
point.

(U.P.T.U. 2002)
Solution. Let OA be a beam, clamped (i.e. fixed) at one end O and free at end A.

Let B be its mid point. The weight —Z—l of the beam OB acts at C (the mid point of

OB). The weight w acts at A.

Let R be the force acting at O. The directions of all the force acting on the beam
are as shown in figure.

N(xy)
S g
4 Free end
C B A
L A O
i v X——

Fixed end wi 4 w

2

< X N’
-. From balance equation, we have

Now we choose a random axis NN, if (x, y) are the co-ordinates of N, then taking
moments about N, we get

2
EId—Z=-Rx+M (x-—l—)

dx 2 4
d*y wi wl wl?
or El 32 =—(W+ 7)x+ = %= ———8-—using (1) for R
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or Fr—% =22

Integrating both sides w.r.t. x, we get

2

dy __wh
dx 8
Applying boundary conditions at the fixed (i.e. clamped)

end Oie,atx =0, dy/dx =0, we get from (2), C; =0

EL x -% Wx? +C, ()

2
. (2) becomes, EI dy o _wb X - 1 Wix?

dx 8 2
.. . w1 3 l
Again integrating Ely = - % & Wx® +C, 3)
Again boundary conditions, at x =0,y = 0 gives C; =0
.. (3) becomes,
2,2 3
Ely = -wl'x™  Wx
16 6
1 [(wiBE WX
or = - +
EI | 16 6

which gives the deflection at any point.

Example 41. The deflection of a strut of length I with one end (x = 0) built in and
the other end supported and subjected to end thrust P, satisfies the equation

2 2
SEeaty =R (-

dx?

Prove that the deflection curve y = % (sm & lcosax+1- x)
a
where a [ = tan al
(U.P.T.U. 2001)

Solution. we have

dzy 2. _ a2R

&z‘*a)"?(l-x) (1)
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its auxiliary equationism?2+a2=0 = m =+ ai
- CF.=Ci cos ax + Cz sin ax

where C; and C; are arbitrary constants.

k ! -
Builtin P X N A P
................................... X
Supported
Y (xy)
1 aR
PI= — (-
D?+a> P (=2

. The general solution is
y = C1 cos ax + C2sin ax + %(l—x) (¥A)]

Differentiating (2) w.r.t. x, we get

d—y=-Clasinax+C2acosax—% 3)

dx
The end O of the strut is buitin, soatx =0,y =dy/dx=0
-~ (2) gives

+.lﬂ = C1=_.&l

0=C
1p P

and(3)giveso=C2a—£;- = C,=—
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Putting for C; and Czis (2)

RI R . R
y=-— cosax+ — sinax + — (I - x)
P aP P

R (sinax
: y=_

—lcosax+l—x) 4
P

a

Also, the end A of the strut is supported, so at x = I, y = 0, so that (4) becomes

O=-IS (sm al -lcosal+1—l)
P a
or sin al = [ cos al
a
or al = tan al

Hence the required equation of deplection curve is given by (4) where al = tan al.

EXERCISE
Solve the following differential equations

2
1.31) x* j—%+x%}i+y=sin(logx2)
X X

Ans. y = Cj cos (log x) + Cz sin (log x) -% sin (log x?)
. d’y dy . _ .
(i@ @+x2—5+(1+x)—=+y=sin2{log(1+x)} (L.A.S. 2003)
dx dx
Ans. y =C; cos {log (1 + x) + Czsin {log (1 + x)} -%—sin 2 {log (1 + x)}

3 2
2. de_}i+3x§_)i+§_y_=leogx
dx? dx*  dx

3
Ans., y=C1 + C2log x + C; (log x)? + %—(logx-l)

4 3 2
3. x‘ld—X+6x3d—%’—+4x2£i—)21-2xd—y

dx* dx dx dx 4y =2 cos (log x)

Ans. y=C;x2+ Cax2+ C3 cos log x + Cysinlog x - %logxsinlogx
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Ans.

Ans.

Ans.

Ans.

10.

Ans,

11.

Ans.

12.
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2
x? % - x j—y -3y =x2 log x (LA.S. 2001)
X X

y=Cix3+Cyx1 -%x3 (logx+ %)

d2
—}2’ +y = cosec x by the method of variation of Parameters
X

d
y = Ci cos x + C2 sin x - x cos x + sin x. log sin x
d

2
d—}; + (1 - cot x) %X -y cot x = sin’x by variation of parameters.
X X

(U.P.T.U. Special Exam 2001)

y =Ci(sinx - cos x) + Cze - llosinZX + —;—cos2x

d’y dy

x2 —2 —(x? +2x) =L + (x + 2) y = x°e* of which y = x is a solution.
dx? dx y y

y=x(Ci1+ Crex+ xeX)

. d2y dy . . .
(x sin x + cos x) 5z ~ X COS X i +y cos x = 0 of which y = x is a solution.
X X

y =-Cicos x + C2x
2

3—}2’ -2tanx %X + 5y = e*.sec x by reducing normal form.
X X

y=secx(C1 cosv6 x + C, sin 6x+;e")

2

(1 +x2)2 g—% +2x (1 +x%) g—x + 4y = 0 by changing independent variable.
X X

y = C1 cos (2 tan'! x) + Czsin (2 tan-! x)

d’y _dy

X 7 dx + 4 x%y = 8x® sin x* by changing independent variable.
X X
y = C1 cos x2 + Cz sin x2 - x2 cos x2
2
-(1—)2'- + (3 sin x - cot x) &, 2y sin®x = e *. sin’x by changing
dx dx
independent variable.
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13.

Ans.

14.

Ans.

15.

. Ans.

16.
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1
y=C1 ecosx + Cy @2cosx + g e oS X

(U.P.T.U. 2007)

x=——c—1 sin 3t + Elcos?;br Eisint—c—“cost+ le't+ —1—sin2t+ AwhereA=--g
2 2 2 2 5 5 4

y=C cos3t+Czsin3t+C3cost+C4$int+% (-e't + % sin2t)

%+ ﬂ -2y = 2 cost - 7 sint
dt dt
%_EX +2x=4cost-3sint
dt dt

(U.P.T.U. 2001)

X =~ (1—\/5) C, et -(1+42)C, et +3cost+ C,
y=C, et +C, eVt + 2sint
d’x d
-d—t?-sx-4y=o,ag—'+x+y=o
(U.P.T.U. 2005)
= [2C+2C+2Cat)et+2Cs-2Cs +2Cy t) e]
y=(Ci+Ct)et+ (Co+ Cyt) et

Solve dx +5x-2y=t
dt

dy
D rox+y=0
at Y

Also show that x =y = 0 when t = 0 for some definite values of constants

(U.P.T.U. 2008)

1 1 t 1
Ans. x=Cledt + Cted -—Cred ——Ciedt +—-+—,y=(C + C f) eP
ns. x 1€ 2 te 5Cae 5 G 927y(1 2 1)
2t 4
—_—
9 27
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18.
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20.
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A particle moving in a straight line with SH.M. has velocities vi and v2
when its distances from the centre are x; and x. respectively. Show that the

2.2 _ 2.2
. o X2 -x3 . . . (lez ‘V2X1)
period of motion is 2 , | ———; and its amplitude is | [-~—————
Va = V; (Vl - Vz)

(Bihar P.C.S. 2005)

A particle is performing a simple harmonic motion of period T about a
centre O and its passes through a point P, where OP = b with velocity v in
the direction OP. Prove that the time which elapses before it return to P is

I tan™ (ﬂj
4 2nb
(L.A.S. 2007)

A particle of mass m is projected vertically under gravity, the resistance of

the air being mk times the velocity. Show that the greatest height attained
2

by the particle is A [A —log(1+ A)]where V is terminal velocity of the
&

particle and AV is the initial velocity.
(U.P.P.C.S. 2004)

If u and V are the velocity of projection and the terminal velocity
respectively of a particle rising vertically against a resistance varying as the
square of the velocity. Prove that the time taken by the particle to reach the

highest point is —:—;— tan™ (%)

(I.A.S. 2006)
In the LCR circuit, the charge q on a plate of a condenser is given by
2
L 49q +R dq +31 —Esin pt. The circuit is turned to resonance so that
dt? dt C

p* = % If initially the current i and the charge q be zero, show that for

small value of —IE, the current in the circuit at time t is given by (S_It) sin pt.

(U.P.T.U. 2004)
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Objective Type of Questions

Choose a correct answer from the four answers given in each of the
following questions.

1. The solution of the differential equation

2
x* 4y + X %X +y = sin (log x?)is
X

dx?
(@) C1cos (log x) + Czsin (log x) + % sin (log x2)
(b) Ci1 cos (log x) + Cz sin (log x) —7;— sin (log x?)
(c) Cicos (log x) + Cz sin (log x) -—;— sin (log x)

(d) Ci cos (log x2) + Cz sin (log x2) -—;— sin (log x)

Ans. (b)
2. A particular integral of the differential equation

3 2
Xzﬂ-{-SXg_y.+£i.X. =X210gx
dx® dx?  dx
X logx-1 o X 1
—_— - —_ +
@ T logx-1 () X (ogx+1)

x3 x>
(c) > (logx-1) (d) > (log x +1)

Ans. (c)

3. A particular integral of x* g% +4x % +2y=e"is
() ;15 e* ®) e

© Xlz 2 d) xl_z o3

Ans. (a)
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2
4. The C.F. of the differential equation x* 4y + xﬂ -y =x%"

dx? dx
(@) C, x* + C—22 (b) C, x* + S
X X
) C x+ S d Cyx+ S
! x? ! X
Ans. (d)
5. On putting x = ez the transformed differential equation of
' d’y . d
2 4y y =i
X @ + x& +y=XxIs
d? d? .
@ 3 =e )  Fry=e
&y 2
d
@ gx+y=e® @ —F+y=e
Ans. (b)

6. The equation of motion of a particle are given by simultaneous differential

equations 3—: +wy =0, % - wx = 0, Then the path of the particle is

(a) Straight line (b) Circle

(c) Ellipse (d) Parabola

Ans. (b)
2

7. A Particular integral of %_y +P ? +Qy =0is y = emx if
X X

(@ m2+Pm+Q=0 (b) m2-Pm+Q=0
() m+Pm2+Q=0 (d) m2+Pm-Q=0
Ans. (a)

2 dy

8. y=exisa partof CF. of differential equation j—y +P —= I +Qy =0if
X

(@ 1+P+Q=0 (b) 1-P+Q=0
(c) P+Qx=0 (d) P-Qx=0
Ans. (a)

148



Equations Reducible To Linear Equations with Constant Coefficients

9. In adifferential equation

dzy 2 dy
¥ _d__z_ - (x* +2x) ™ +(x+2)y= x3e",y = x is a part of C.F. because
X X

(@ P-Qx=0 (b) P+Qx=0
() 1+P+Q=0 (d) 1-P-Q=0
Ans. (b)

2
10. The solution for %-)—I - 4x gy- + (4x? -2) y = 0, given that y = eis an integral
X X

included in the complementary function is
@ y=Cix+C) (b)) e (Cix+Cy)
(© e Cyx d e ([Cx+Cy)
Ans. (d)

11. A resistance of 100 ohms, an inductance of 0.5 henry are connected in series
with a battery of 20 volts. The current in the circuit is

@ i=;@-e®) ©)  i=g@-e®)

(1 _ e200t)

yil= Ul

© i=z@-e™y @ =
Ans. (c)

12. The solution of the differential equation L % +Ri=E; sinwtis

EoL sin (wt +tan™! %)

(a) {= —e—2
'RZ +L2 w2

(b) i= Bl sin (wt - tan! ﬁi)
R2 + w2L2 R
(¢ i= E L sin (wt + tan™ —B—)
R? + w’L? wiL
) i= Bl g (wt—tan'l —13—]
R? + w12 wL
Ans. (b)
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13. A particle executes S.H.M. Such that in two of its positions, the velocities are
u, v and the corresponding accelerations a, . The distance between the

position is
a+f a? +p?
b
(2) 2 -2 (b) 2 -2
. u? - v2 u? - v2
d
© S @ E5
Ans. (c)
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Chapter

Partial Differential Equations

Introduction

Partial differential equations arise, in cases when a dependent variable is a
function of two or more independent variables. An ordinary differential equation
can be formed by eliminating arbitrary Constants from a relation between two
variables such as f (x, y) = 0, and in general the order of the differential equation
is equal to the number of arbitrary constants eliminated. A partial differential
equation, on the other hand, can be formed by eliminating not-arbitrary
constants, but arbitrary functions, from a relation involving three or more
variables, Provided such an elimination is possible, In many problems of science
and engineering a dependent variable is connected implicity or explicitly with
two or more independent variables. If z = z (x, y) is a dependent variable where x
and y are the independent variables, then the first order partial derivative of z

with respect to x and y are denoted by p = g_)z(_ and q = 95 The second order

partial derivatives of z are given by

’r z 3z

—, s= _—, = ——

axz axay ayz

Definition: An equation involving one or more partial derivatives of an
unknown function of two or more independent variables is called a partial

differential equation.
2 2

r=

Example 1. %x% =a’ %t—; is a partial differential equation.
2 2
Example 2. %xl:— + %Lzl = 0 is a partial differential equation.

Definition 2 The order of the highest derivative occuring is a partial differential
equation is called the order of the equation.

Example 1. x* % +y? ?—a; = z is a first order partial differential equation.

Example 2. The equation
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o
Definition 3. The degree of a partial differential equation is the degree of the
highest order partial derivative occuring in the equation.

Example The degree of the equation

2u Y ou
+u? | = | =f(x,y) is a second order partial differential equation.
o Yy P q

o*u  &%u .
éx_z + gy'? =0 is one
Notation

If z is a function of two independent variables say x and y then, we shall use the
following notation for the partial derivatives of z.

oz oz D’z 0%z 0’z
—_—=p, — = ql _2 =1, =8, ._2 =t
ox oy ox oxoy oy
1. Zx= P, Zy= Q, Zxx =T, Zxy = 5, Zyy = t
Formation of Partial Differential Equations

Partial differential equation can be formed in two ways- (1) eliminating arbitrary
constants and (2) eliminating arbitrary functions

1. By Elimination of Arbitrary constants:

We can form partial differential equation by eliminating arbitrary constants from
the given equations.

If the number of arbitrary constants is equal to the number of variables, in the
given equation of a curve, we get a first order partial differential equation

Consider the equation

f(x,y,z,a,b)=0 ®
Where a and b are arbitrary constants
Differentiating (1) partially with respect to x and y, we get

ﬁ-{-ﬁ%:(}or.@f_-}-gf_p:o (2)
ox 0z Ox ox 0z
and §+Qf—%=00r~a—f—+—a—f—q=0 (3)

Eliminating a and b from the equations (1), (2) and (3), we get an equation of the
form

¢(xy zp q=0
Which is the required partial differential equation of (1)
Example 1 Eliminate the constants a and b from the following equations
(A) z=(x+a)(y+b)
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(B) z=(x-aP+(y-bp
(©) ax2+by2+z2=1

Solution (A) We have z = (x+a) (y+b) 1)
Differentiating equation (1) partially with respect to x and y, we get
0z

S TPmOrD& T mam(xra)

Substituting in (1) we have z = pq which is the required differential equation
(B) The given equation is

2= (x-a)2+ (y - b 1)
Differentiating equation (1) partially with respect to x and y, we get

0z

5;=2(x—a)&—g—:;=2(y—b)

On squaring and adding these equations, we get

&) (3] ot o

=4z using (1)

=>p?tq2=4z
Which is the required differential equation
(C) The given equation is

ax2 +by2+ 22 =1 (1)
Differentiating equation (1) partially with respect to x and y, we get

2ax+22%=0 = 2ax+2zp=0

= ax = -zp
= a=-zp/x
and2by+2zgz—=0 = 2by +2zq =0
oy
= by = -2zq

=b=-zq/y
putting the values of a and b in equation (1) we get

orz(pxtqy)=22-1
Which is the required differential equation.
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Example 2. Find the partial differential equation of all planes cutting of equal
intercepts with x and y axes

SolutionLet X + ¥ + 2 =1 1)
a b ¢

be a equation of a plane making equal intercepts on x and y axis, so in this
casea=Db.

Differentiating (1) partially with respect to x and y, we get

l+l%=0i.e._—c=p )

a ¢ a

1 1oz -C
d-+—- —=0ie.—=q va=b 3
an b oy ie - q-a 3)
From (2) and (3), we have

P=q

ie.p-q=0

Which is the required differential equation
Example 3 Find the partial differential equation of all spheres whose centres lie

on the Z-axis (U.P.T.U. 2009)
Solution Let the equation of the sphere having its centre on z-axis be
X2+ y2+ (z-cj2= 12 @

Differentiating (1) partially with respect to x and y, we get
2x+2(z-c) oz =0
0x
orx+(z-c)p=0
orz-c=-x/p 2
0z
and 2y +2(z-c) — =0
oy
ory+(z-c)q=0

orz-c=-y/q ®)
From (2) and (3), we have

ie.xq-yp=0
which is the required differential equation
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2. Formation of Partial Differential Equations by The Elimination of Arbitrary
Function of Specific Function

When one Arbitrary Function is involved

In this case the resulting partial differential equation is a first order partial
differential equation

Let the arbitrary function be of the form

2= (u) (1)
where u is function of x, y, z
Differentiating (1) partially with respect to x and y, we get

2 o, X ouodz 2
ox oOu Ox Ou 0z ox

g Z_X W O e -
dy ou dy ou oz dy

By eliminating the arbitrary function f, from (1), (2) and (3) we get a first order
partial differential equation
Example 4 Form the partial differential equation by eliminating the arbitrary
function f from the relation

z=y? +2f ( + log yJ (LA.S. 2007, Bihar, P.C.S. 1995)
Solution We have
z=y +2f( +logy] (1)

Differentiating (1) partially with respect to x and y, We get

0z 1
— = 2f + lo
x P ( gy) ( x? )

or -px? = 2f [l + log y) 2)
X
anda——q 2y+2f'( +logy) (1J
oy X y
or qy - 2y* =2f ( + log y) (3)
From (2) and (3) we have
..px2 = qy - 2y2

ie. x?p + qy = 2y2
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Which is the required partial differential equation.
Example 5. Eliminate the arbitrary function f from the equation

z=f("%)

Solution. We have z =f (ﬂ) (1)
z

Differentiating (1) partially with respect to x and y, we get
6 . -X
=p= f(XY/Z)Y( = pj )

g;--q f(xy/z)x( yq) @)

Dividing (2) by (3) we have
P _ y(z-xp)
q xz-yq)
P _ YZ-Xyp
q xz-Xxyq
orpx-qy =0
Which is the required partial differential equation.
When Two Arbitrary Functions are Involved

When two arbitrary functions are to be eliminated from the given relation to form
a partial differential equation, we differentiate twice or more number of times
and eliminate the arbitrary functions from the relations obtained.

Example 6. Form a partial differential equation by eliminating the function f and
F from

z=f(x+iy) +F (x - iy)
Solution. The given equation is

or

2= f(x + iy) + F (x-iy) )
Differentiating (1) partially with respect to x and y, we get
22 =8 (xviy) + F' (x-iy) @
oz _ . N .
and 5}—’ =if (x+iy) -i F' (x-iy) 3)

Differentiating equations (2) and (3) partially once again w.r.t. x and y, we get
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2

o L xriy)HE(x-1y) (4)
d L2 pixriy)-F (x-i 5

an Pl (x +iy) - F' (x - iy) ©)
Adding (4) and (5), we get

ox* 0Oy
Which is required partial differential equation of second order.

EXERCISE

1.  Form Partial differential equations by eliminating the arbitrary constants

from the following:
(i) z=(x+a)(ytb) Ans.pq=z
(ii) 2z=(ax+y)+b Ans. q2=px + qy
(iiiy z=ax+ (1-a)y+b Ans.ptq=1
(iv) az+b=ax+y Ans.pq=1
(v) z=alog (}—)%1—11—)) Ans.px +qy =p +q

-X

2. Form the partial differential equation by eliminating the arbitrary functions

from
(i) z=xy+f(x2+y? Ans. py - qx = y2 - x2
(i) z=x+y+f(xy) Ans.px-qy=x-y
(iii) z=1£(xy) Ans.p+q=0
(iv) z=f(x2+y? Ans.xq-yp=0
(v) z=f(x2-y? Ans.yp txq =0
(vi) f(x2+y2+ 22 22-2xy)=0 Ans. (p-q)z=y - x
Hint. The given equation is f (x2 + y2 +22,z2- 2xy) = 0 1)
Letu=x2+y2+ 22, v=122-2xy 2)
so equation (1) becomes f(u, v) =0 (3)
Differentiating (3) partially w.r.t x, we get
ﬁ(@+p@)+a—f(@+pﬁj=o (4)
ou \ Ox oz ov \ ox oz

From (2) we have
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ou o

OX Z oy

ov ov ©)
ox

il Bkl 6
of/ ov qu 811) ©)
Similarly differentiating w.r.t. y, we get

N gV
af/au=_(ay+q 5ZJ -
5

oy Vo
putting the values from (5) in equation (6) and (7), we get
of/ou _ _(-2y +2pz)
of/ov  (2x + 2zp)

& O/ou _ _(-2x + 2qz]

of/ ov 2y +2zq
Pz-y _ qz-X
" pz+x qz+y

=pz(x+y)-qz(x+y)=y?-x

or(p-q)z=y-x

3.  Form a partial differential equation by eliminating the arbitrary function ¢
from ¢ (x +y + z, x2 +y? - z2) = 0. What is the order of this partial

differential equation? (U.P.P.C.S. 1993, Bihar P.C.S. 2007)

Hint. Given

O (x+ty+z, x2+y2-22)=0 @
Letu=x+y+z&v=x2+y?2-22 (2
Then (1) becomes f (u, v) = 0 3)
Differentiating (3) partially w.r.t. x, we get

B (3 ) W (), "
ou \ ox 0z ov \ 0x oz
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From(2)%2—= ?=1,%=2x
Z
()
—@:_h,@:l,i‘!:zy
oz oy oy

From (4) and (5) % (1+p) +2 % (x-pz)=0

0 _ -2(x-pz)
Ty 1 ©)
% (1+p)

ov
Again differentiating (3) partially w.r.ty, we get

% [au qauj @(ﬁ+q@]=o

ou | dy ov | oy oz
or % (1+q)+2 g:i (y - zq) = 0 using (5)
% ) )
-2(y-qz
or au@ =-2(-9 % +q ?)
ov
From (6) and (7) by eliminating ¢, we get
(x-pz) _ y-9z
T+p  1+q

or(1+q)(x-pz)=(1+p)(y-qz)
or(y+z)p-(x+z)q=x-y
which is the desired partial differential equation of first order.

Solution of Partial Differential Equation by Direct integration:
2
Example 1. Solve —Sx—f =Xy

luti . &’z _ 1
Solution. Given 7 Xy 1

treating y as constant and integrating (1) with respect to x, we get

Z -y X hy) Gay) @

Integrating (2) with respect to x keeping y as constant, we get
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3

Z=y§6~+xf(y)+g(y)

3
Hence the required solution is z = X—6y +x f(y) + g(y)

2
Example 2 Solve Xz _ 1
Ox

= -
Pz _ 1

Xy
treating y as constant and integrating (1) w.r.t x,

Solution. Given

@

we get
=y B8 @

Now keeping x as constant and integrating (2) w.r.ty, we get
z=log xlogy + j¢(y) dy + g(x)

or z=log x log y + f(y) + g(x)
which is the required solution
3

Example 3. Solve = cos (2x + 3y)

axz
o’z

Solution. we have ol

= cos (2x + 3y) 1)

treating y as constant and integrating (1) w.r.t. x, we get

0’z
oxdy
Integrating w.r.t. x, we get
0z

> = -% cos (2x + 3y) + x If(y)dx +g(y)

- _i cos (2x + 3y) + x¢ (y) + g(y)

= % sin (2x + 3y) + f(y)

Integrating w.r.t. y we get

z= -% sin (2x +3y) + x [f(y) dy + [g(y) dy
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:>z=—1i2 sin (2x +3y) + x ¢ (y) + & (Y5

Lagrange's Linear Equation

The partial differential equation of the form

Pp+Qq=R (1)
where P, Q and R are functions of x, y, z is called Lagrange's linear partial
differential equation. Lagrange's linear equation is a first order partial differential
equation.

Method of solving Lagrange's equation

Equation (1) i.e. Lagrange's equation is obtain by eliminating arbitrary function
from ¢(u, v) = 0 where u and v are functions of x, y and z

Differentiating

¢(u, v) =0 (2)

partially with respect to x and y, we get

ou \ox 0z ov \O0x 0Oz
ou \(dy oz ov \dy 0Oz

Eliminating —g% and % from equation (3) and (4) we get

ou _ Ou ov  ov

— + = —+—D

ox Oz ox 0z 0

ou , Ou ov

o(@@_@@}p (@g@z_?géz)q:_zv__zu_@ )
dy oz oz oy oz ox ox oz ox dy 0y ox
Comparing (1) and (5), we get

du ov  Ou ov

Cx oz oz oy
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Q- du v _oudv
oz ox  ox oz
_ou v _ouov
ox oy dy ox

Now let us suppose u = Cy, v = C; are two solutions of the Lagrange's
equation Pp + Qq =R
Differentiating u = C; and v = C; partial with respect to x and y, we have

M oger B gy M gz=qu=0 ©6)

ox oy 0z

and&dx+@dx+@dz=dv=0 7)
ox oy 0z

From (6) and (7) by cross-multiplication we have

dx _ dy - dz
fu dov Ouodv Ouodv Ou dv Ou ov Ou Ov

_ The solutions of these equations are
u=Candv=C

Hence ¢ (u, v) = 0 is a solution of equation (1)
Working rule:

Step 1: Form auxiliary equations % =L ==

Step 2: Solve the above auxiliary equations Let the two solutions obtained be
denoted by u=Cyand v =C;
Step 3: The required solution of the equation

Pp+Qq=Ris

¢(u,v)=0

Example 1. Solve yzp + zxq = xy

Solution. Given yzp + zxq = xy (1)

Lagrange's auxiliary equations for (1) are
dx _d dz
-~ @

Taking first two members, we have
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xdx-ydy=0

Integrating, we have

x2-y2=C

Similarly taking the first and the last members
we get

x2-z2=Cs

Therefore, the required solutions is

f(x2-y%, x2-2z3)=0

Example 2. Solve p tanx + q tany = tan z

Solution. Here Lagrange's auxiliary equations are
dx dy dz

tanx tany  tanz

From first two fraction of (1) we get
cot x dx = coty dy

Integrating, we get

log sin x = log sin y + log C;

or log (Sin%in y) =log C,

or Sinx/siny = C;

Similarly, from the last two fractions,
we have

siny/sinz =C;

(U.P.P.C.S. 1990)

From (2) and (3) required general solution of the given equation is

¢[sinx sin yJ =0

siny’ sin z

Example 3. Find the general integral of

(mz -ny) p+ (nx -Iz) q = ly - mx

Solution. The auxiliary equations are
dx dy dz

mz - ny Cnx-lz ly - mx
Choosing x, y, z as multipliers, each fraction of (1)
xdx +ydy + zdz

x (mz - ny) +y (nx - [z) + n (ly - mx)
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_ xdx+ydy+zdz

B 0

Sxdx+ydy+zdz=0

Which on integration gives

x2 + y2 +7z2=C; (2)
choosing I, m, n as multipliers, each fraction of (1)

_ I dx+ mdy + ndz

- I (mz - ny) + m (nx - [z) + n (ly - mx)

_ ldx+mdy +ndz

B 0

s ldx+mdy +ndz=0

which on integration, we have

Ix+my+nz=C; 3
.. Required general solution is

¢ (x2+y2+ 22, Ix+my+nz)=0

where ¢ is an arbitrary function

Example 4. Find the general integral of (y + zx) p - (x + yz) q = x2-y?

(U.P.P.C.S. 2002, Bihar P.C.S. 2002)

Solution. The Lagrange's auxiliary equations are
dx dy dz

= = 1
yrzx  -(xtyz) x-y ()
ie. ydx+x2dy _ dz2

y2-x x2 -y
ord(xy)+dz=0
on integration, we get
xy+z=C 2
Again dx+dy 2dz i

(y-x)-z(y-x) x“-y

dx+dy _ dz
or =
-(1-z)  x¥y

or (x+y) (dx + dy) + (1-z) dz=0
or d {—;— (x+y)2} +(1-2)dz=0

Integrating above, we get
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1 22
1 6oy + (=2 ),

or x2 + y2 + 2xy + 2z - z2 = C3 where 2C,= C;
orx2+y2-z2=Cywhere G -2C1=C4

Therefore, the general solution is

f(x2+y2-22,xy+2z)=0

where f is an arbitrary function

Example 5. Solve
(2x2+y2+22-2yz-zx-xy) p + (X2 + 2y2 + 22 - yz - 2zx - Xy)q

=x2+y2+ 222 -yz - zx - 2xy (LLAS. 1992)
Solution. The Lagrange's auxiliary equations are
dx _ dy - dz
2x2 +y2 + 22 -2yz-zx - Xy x? +2y2 +22 -yz-2zx - Xy x2 +y2 + 272 ~-yZ - zZx - 2xy
dx-dy _ dy-dz _ dz-dx

(y) (xtyrz)  (7-2) (xtytz)  (zX) (xty+z)
Taking first two fractions we have
dx-dy _ dy-dz
X-y - y-z
Integrating, we get
log (x-y) = log (y - 2) + log C1

or X;_ = Cl
y-z
Similarly, we have

.. The required solution is ¢ [ﬂ, ﬂ) =0
y-z y-z

Example 6. Solve

(y+z+t) % + (z+x+t) —s—; + (x+y+t) % =xty+z (I1.A.S. 1995)

Solution. The Lagrange's auxiliary equations are

dx d dz dt
L= - 1)

ytz+t oztxtt xty+t - xty+z
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. dx-dy _ dy-dz _ dz-dt _ dx+dy+dz+dt
Ty -0m) ) By
Taking first and Second fraction, we have
dx-dy _ dy-dz

X-y B y-z
Integrating above we have
log (x-y) = log (y-z) + log C:

X=

XY - C, @)
y-z

Similarly taking second and third fraction, we have

z-t

— =G (3)
y-z

Again taking third and fourth fraction, we have
dz - dt . dx+dy+dz+dt _ 0
z-t 3 (x+y+z+t)

Integrating, above we have
log (z-t) + % log (x+y+z+t) =log C3

or (z-t) (x+y+z+t)1/3=C;
.. The general integral is

f {ﬂ, 2 (@t (ery ezt =0

y-z y-z
Example 7. Find the surface whose tangent planes cut off an intercept of constant
length k from the axis of z. (IAS 1993)

Solution. Equation of the tangent plane at (x, y, z) is
Z-z=p (X-x) + q (Y-y)

Since k is the intercept on the axis of z

. whenX=0=Y,Z=k

S k-z=p(-x) +q(-y)

or xp + yq = z-k
The subsidiary equations are
& _dy _ da

X y 2k

Taking the first two members, we have
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y
s logx=logy-logC

dx _d
X

X
or — =C,

Again taking the first and last members.
we have
dx _ dz
X zk
- log x = log (z-k) - log C;
or zk _ C,
X
y z-k
2 =

J =0 which represents the required
X

Therefore, the general solution is ¢ (

surface.
Example 8. Solve

(z2-2yz - y2)p + (xy + xz)q = xy - xz
If the solution of the above equation represents a sphere. What will be the

coordinate of its centre. (Bihar P.C.S. 1999, Roorkee 1975)
Solution. Lagrange's auxiliary equations are
dx d dz
=t = M)

Z-yz-y’ X2 x(-2)
From the last two fractions of (1), we get
dy _ dy
vtz y-z
or (y-z) dy = (y+z) dz
or ydy - (zdy + ydz) -zdz=0
orydy - d(yz) -zdz=0
Integrating, we get
y2-2yz-22=C; 2
Again choosing x, y, z as multipliers, each fractions of (1)
xdx + ydy + zdz
x (2 -2y z-y7) +y (xy +x2) + 2 (xy - x2)
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_ xdx +ydy + zdz
B 0

xdx + ydy + zdz =0
Integrating we get

xX2+y2+22=C; 3
From (2) and (3), the required general integral is
0 (72~ 2y2- 72, X+ y2+ 27 =0 @

Where ¢ is an arbitrary function

From (4) we observe that if the solution represent a sphere, then co-ordinates of
its centre must be (0, 0, 0) i.e. origin

NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS Those equations in
which p and q occur other than in the first degree are called non-linear partial
differential equations of the first order. In other words partial differential
equations which contains p and q with powers higher than unity and the product
of p and q are called non-linear partial differential equations.

Special Types of Equations

Standard I. Equations involving only p and q and no x, y, z That is, equation of
the form f (p,q) = 0 @
i.e. equation which are independent of x, y, z.

Let the required solution be

z=ax+by+c (2)
where a and b are connected by
f(a,b)=0 ®)

Where a, b, c are constants,

Differentiating (1) partially with respect to x and y, we get
L a and L. b

ox

Which when substituted in (3), gives (1)

From (3) we may find b in terms of a

ie.b=¢ (a) say

The required solution of (1) is
z=ax+¢(a)y+C

Example 1Solve p2 + g2 =1

Solution. The equation is of the form f (p, q) =0
The solution is given by

z=ax+ by +C
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where a2 + b2=1
or b= ./(1-a%)
Hence, the required solution is

z=ax+,/(1-a®)y+C

Equation Reducible to f (p, q) =0

In some cases, we transform the equations into f(p, q) = 0 by making suitable
substitutions

Example 2.Solve (x +y) (p+ qP+ (x-y) (p-9q)*=1 (LA.S.1991)
Solution. putting x +y = X2, x -y = Y2
so that
oo X &N _1 e, 1
ox oX ox  OY ox  2X oX 2Y oY
0z _ 0z X 0z oY _ 1 0Z 1 o2
and q= — = — +— = = e —

oy &X dy Y 8y 2X aX 2Y Y

-+ =l%and _=l§£
PTA™ 3 x 9P 17 Y &

putting in the given equation, we have

( oz Jz ( oz )2

_— + | — = 1

oX oY

Which is of the form of standard I

.. The complete integral is given by
z=aX+bY¥Y+c

Where a2 + b2=1 or b? = \/(1-a?%)

. The required complete integral is

z=a/(x+y) + /(1-a%) (x-y) + ¢

Example 3. Find the complete integral of (y - x) (qy - px) = (p-q)* (1.A.S.1992)
Solution. Letus put X=x+yand Y = xy
oz _ 0z X &N _o2 2
x X ax oY ox  ox ) oY
_ 0z _ 90z X 0z oY _ oz 0z
andq=—=—"— ——+ — —~ = — +x —
oy oX oy oY 9y X oY

Substituting in the given equation we have
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2
6059 2 = 507 (2]

oY

2-(2]
oX oY

Which is of the form of standard I

.. The complete integral is given by

z=aX+bY+c

where a = b?

.. The complete integral is

z=b2(x+y)+bxy +c

Standard II Equations involving only p, q and z i.e. equations of the form

f(z,p,q) =0

Equations of the form f (z, p, q) =0 1

Let us assume z = f (x+ay) as a trial solution of given equation (1), where a is an

arbitrary constant

~.z=f(X) where X = x + ay
_ 0z _ 0z 6X_@1=62
ox oX ox oX oX

. Equation (1) reduces to the form

f( z, E’ a .Ed_z_j = 0

dx'  dX
Which is an ordinary differential equation of order one. Integrating it we may get
the complete integral

Example 4 Find the complete integral of

2(p2z2+q) =1 (I.A.S, 1997)
Solution Putting z = f (x + ay) = f(X)

where X =x + ay

SO t}‘lat p: % = E
ox dX

oz dz

and q= — =a —
oy dX

The equation becomes
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2 2
(g (2]
dX dX

2,2, .2 [dzjz
orz°(z°+a’)|—| =
dX

or zy/(z* +a?) dz = dX

Integrating, we have
% (22 +a’*=X+b

_ or9(x+ay+b)2=(z2+a2)3
which is the required complete integral
Example 5. Solve pq = xmynz!

m+1 n+l

Solution. Putting >— =X, L— =Y
m+1 n+1
sothatp:%__az_d_x_ m _a_z..
ox  0X dx oX
dy oY dy oY
Then the given equation reduce to
0z 0Oz !
—_— —— Z
oX oY

Which is the form of standard II
. putting z = f (X + aY) = f(u)
where u = X + a¥Y

N du oY du
Equation (1) becomes

a(g)z =z
du

- du
or z1? dz=—=
a

Integrating, we have
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!
z 2 u
=_.__+b
T, %
2
B )
2 m+1 n+
or = =L |x +a +b
I 11 +a |m+l n+1
2

Standard III i.e. Equation of the form f (x, p) = F (y, q)

As a trial solution, let us put each side equal to a arbitrary constant
ief(x,p)=F(y,q)=a

from which we obtain

p=fi(x,a)and q=1f2 (y, a)

Now from dz = pdx + qdy

we have dz = f; (x, a) dx + f2 (y, a) dy

z= jfl (x,a)dx+ [f (y,a) dy+b

Which is the complete integral
Example 6. Solve p2 + q2=x +y
Solution. Letp2-x=y-q?=a

o p=,/(x+a) and q = /(y-a)
putting in dz = pdx + qdy, we have

dz = \/(x+a) dx + J(y-a) dy
Integrating, we get

2, 32, 2 3/2
=" (x+ + = (y - +b
5 a) 3 (y-a)

Example 7. Solve z (p? - ¢?) = x~y (I.A.S. 1989, UP.PCS. 1992)
Solution The given equation can be written as

(J;?ET_ A
ox ay) 7
putting vz dz = dZ, so that Z = % z*/?

2 2
The equation becomes (%) - (—iz} = x-y
ox oy

orP2-Q2=x-y
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where P = %, Q= %z

ox oy
orP2-x=Q2-y=a
Which is of the form of standard HI
SPRex2=Q2-y=a

~ P=(x+a) and Q = /(y+a)
Putting in dZ = Pdx + Qdy, we have

dz = Jo+a) dx + fy+a) dy
Integrating Z = % (x+a)3/ 2 4 .§_ (y+a)3/ 24p

or z3/2 = (x+a)/2 + (y+a)/2 + ¢
Standard IV Equation of the form Z =px + qy +f£ (p, q)
(Clairaut's form)

An equation of the form z = px + qy + f(p, q), Which is linear in x and y is called
Clairaut's equation

The complete solution of the Clairaut's equation is
z=ax+by+f(ab)
i.e. the solution of Clairaut's equation is obtained puttingp=aand q=Db

Example 8 Solve z = px + qy + c/1+p?+q°

(I.A.S. 1989, Bihar P.C.S. 2007; U.P.P.C.S. 2005)
Solution. This is of the form of Standard IV
.. The complete integral is

z=ax + by + ¢y/(1+a’+b?)
EXERCISE

1.  Solve the following partial differential equations
@  yp-xyq=x(z-2y)
Ans. ¢ (x2-y?, zy-y?) =0
(b)  xzp +yzq=xy
Ans. ¢ (x/y, xy-z?)=0
2
(© [H] p+xzq=y?
X
Ans. ¢ (3 -y%,x2-y?)=0
(d) z(xp-yg=y*-x
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Ans. f(xy, x2+y2+22)=0

© p+3q=5z+ tan(y-3¥

Ans. ¢[y-3x, e-5x {5z + tan (y-3x)}] =0
) x@+rzap-y(P+z)q=z(x*-y?)
Ans. f(x2+y2-2z xyz)=0

(8 *x(y-z)p+(z-x)y2q=22(x-y)

Ans. f(xyz,l + l + 1] =
X y oz
(h) (x+2z)p+ (dzx-y)q=2x2+y (Roorkee 1976)

Ans. ¢(xy -z2,x2-y-2z)=0
@ px(z-2y?) = (z-qy) (z-y>-2x%)

2
Ans. 4{5 +x2 -1, X]=0
X

() (2-yz)p+(y?-xz)q=22-xy
Ans. 4{3‘-'1 E)=o

y-z' z-x
2. Solve the following partial differential equations.
@ p=2¢2+1

Ans. z=ax+ {/(Zb2 +1)y+c

(b) xpH+y2q? =22 (Raj SLET 1997)

Ans. logz=alogx+ /(1-a%) logy +c

© (+y)(p*+a)=1

Ans. z= - log (¢ +y*)+[(1-a) tan” L +C
(d) 9(*z+q)=4

Ans. (zt+a)®=(x+ay + b)?

(€ zZ@EZ+qg)=1

Ans. 9(x +ay + b)2= (22 + a2)

® pra+q)=q(z-a)

Ans. 4 (bz-ab-1)=(x+by +c)?

(g p*=22(1-pq)

Ans. ?/1_; log [z\/g + \/a(1+az2) + \/(1+azz)i] =x+c
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(h)
(i)

Ans. z

)

Ans.

(k)

Ans.

3.
(@)

Ans.

(b)

Ans.

(©)

Partial Differential Equations

p(1+q% =q(z-a)
4a (z-a) = 4 + (x+ay+b)?

q?%y?=z(z - px)
232/{—1i1[(1+4az)} = bxya

p(l+q)=q(z-a)

4a(z-a) =4+ (x+ay + b)’

2(p2+@+1)=c2

(1+a?) (c-2%) = (x + ay +b)’

Solve the following partial differential equations.

\/E+\/El_=2x

=%(a+2x)3+a2y+b

yp =2yx +logq
az=ax2+a2x+eay +ab
72 (p2+q2)=x2+y2

Ans. 2* = x\flarx®) + alog{x +ylatx®)| + yfly? - a) -alog {y+y* -a) + ]

(d)

Ans.

(e)

Ans,

(®

Ans.

(8)

Ans.

(h)

p?-22¢=q*-y
z=§x3 +axi—§(y+a)3/2 +b
P2+ @ = 22 (x+y)

logz = %— (a+x)*? + % (y-a)/* +C

z=px+qy+2pq
z=ax + by + 2ab
z=px+qy+p?+q?
z=ax+by+a2+b?
z=px+qy +log pq
z=ax +by +logab
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Chapter 9

Applications of Partial
Differential Equations

INTRODUCTION

The problems related to fluid mechanics, solid state physics, heat transfer,
electromagnetic theory, Wave equation and other areas of physics and
engineering are governed by partial differential equations subject to certain given
conditions, called boundary conditions. The process to find all solutions of a
partial differential equation under given conditions is known as a boundary
value problem. The method of solution of such equations differ from that used in
the case of ordinary differential equations. Method of separation of variables is a
powerful tool to solve such boundary value problem when partial differential
equation is linear with homogenous boundary conditions. Most of the problems
involving linear partial differential equations Can be solved by the method of
separation of variables discussed below.

METHOD OF SEPARATION OF VARIABLES

It involves a solution which breaks up into a product of functions each of which
contains only one of the variables. The following example explain this method.

Example 1 Apply the method of separation of variables to solve

z 0z oz

—-2—+—=0 U.P.T.U. 2005, 09

x> 9x  Ox ( )
Solution Assume the trial solution z = X(x) Y(y) (@)

where X is a function of x alone and Y that of y alone, substituting this value of z
in the given equation we have

X"Y -2X'Y + XY'=0 where X'=%, Y’=d—Y . etc
dx dy
separating the variables, we get
XZ2X_ Y (i)
X Y

since x and y are independent variables, therefore, (ii) can only be true if each
" side is equal to the same constant, K(say), so we have

X"-2X'__Y'_ K

X Y
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Therefore,

=K ieX"-2X' - kX =0 (i)

and ——i—- =k ie. Y'+kY =0 (iv)

To solve the ordinary linear equation (iii) the auxiliary equation is
m?2-2m - k=0

=>m=1%/(1+k)

. The solution of (iii) is X = Cle{u‘/(—“—k)}x +c2e{]_‘/(h—k)}x and the solution of (iv) is
Y=Creky
Substituting these values of X and Y in (i), we get

z= {c,e{“‘/(m—)}x + cze{l—‘/(l—ﬂ(-)}x}.cae"‘y

Tl g

ie z= {ae

wherea=ciczandb=c2c3
which is the required complete solution.
du

Example 2 Using the method of separation of variables, solve ?ai= 2-a+u,
X

where u(x, 0) = 6 e-3
(U.P.T.U. 2006)

Solution Assume the solution u(x, t) = X(x) T(t) (i)
Substituting in the given equation, we have

XT=2XT'+ XT

or(X'-X)T=2XT'

X-X_T
or >x ST k(say)
o X' =X =-2kX =0

or X=142k (i)
X

T
and T k (iii)
solving (ii), log X = (1+2k)x + log ¢
or X = ce(l*2k)x
From (iii), log T = kt + log ¢'
or T = clekt
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Thus u(x,t) = XT

= cc'e (1+2k)x ekt

Now 6e-3x = u(x, 0) = cc' e(l+2k)x (iv)
sooc'=6and 1+2k = -3 ork = -2

Substituting these values in (iv) we get

u = 6e-3x e-2ie. u = 6e-Gx*2) which is the required solution

Example 3 Solve by the method of separation of variables, 9 = 28—“ +u, where

X oy

u(x, 0) = 3e-5x —2e-3x
Solution Assume the trial solution u = X(x) Y(y) (i)
where X is the function of x alone and Y that of y alone.
substituting this value of u in the given equation we have

XY =2XY' + XY

X' 2y' .

X= v +1=k(say) (i)
Now X k= 1dX_

X X dx

= X kdx

X

on integrating, we get

loge X = kx + loge Ci
= X=qek
And taking last two terms of equation (ii), we have

E51—\1+1=k
Y dy
=>—2—d—Y=K—1
Y dy
Y 2

on integrating, loge Y = —(—k—;—l—)y +logc,

(k-1%
=Y=ce 2

From (i), we get
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u = ¢ 2 ekx elk-1)y/2
From (i), we get
u = ¢ ¢ ekx elk-1)y/2

= u= )Y b ekl (iii)

n=1
bn = cicz and k = Kp
which is the most general solution of given equation, putting y =0 and u = 3e-5x ~
2e-3* in equation (iii) we get

3e™ - 2™ =Y b e"* =b,e" +b,e*”*
n=1

comparing the terms on both sides, we get
b1=3,k1=—5,b2=—2,k2=—3

Hence the required solution of given equation is from (iii), we have
u =3e-5 - -3y + (-2)e-3 e-¥

=5 11 = 3e-(5x +3y) — 2e-(3x+2y)

Example 4.

Use the method of separation of variables to solve the equation.
v
o
Solution. Assume the trial solution v = XT (i)
where X is a function of x alone and Y that of y given

v _dT Pv . dX
W _xL andYordX
ot dt T e

Substituting these values in the given differential equation, we get
d’X _dT 1dT _1d°X

=§ given that v =0 whent— o ,as wellas v=0atx =0 and x=I.

T & & Ta Xae TP
1dT , dT .
——=- —+pT=0
= T dt p~or It p (ii)
14X, dX . L,
and XaE - P ora;+p X=0 (iii)

Solving (ii) and (iii) we get
T =c; eP*tand X = c2 cos px + ¢3 sin px
Substituting these values of X and T in (i) we get

v =c; ePt (2 cos pt + c3 sin pt) (iv)
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putting x =0, v =0 in (ii), we get

0=crePtc;= cp=0sincec;#0

= v =c1ePt s sin px (v)
putting x =1, v =0 in (v), we get

c1 c3 ePXtsin pl =0
= sinpl=0=sinnn
=  p=nn/l,nisany integer

nx

~(n2x?ty/ 2 sin(—l-)
V= Ce

RN N niwx
=by e sin| —
l

where b, = c1 ¢3

. . - —n2ndi /2 . nnx
The most general solutionis v= be™ """ sm[—i—)
n=1

PARTIAL DIFFERENTIAL EQUATIONS OF ENGINEERING

A number of problems in engineering give rise to the following well known
partial differential equations.

d’y Loy
i Wave equation —-=c* —%
@ ave equation —5-=¢ =3
2
(if) One dimensional heat flow equation %ltl =c g—lzl
X
iii) Two dimensional heat flow equation which in steady state becomes the two
q y
2 2
dimensional Laplace's equation 8_121 + 9—2 =0
ox*  ady

(iv) Transmission line equations

(v)  Vibrating membrane. Two dimensional wave equation.

(vi) Laplace's equation in three dimensions.

Besides these, the partial differential equations frequently occur in the theory of
Elasticity and Hydraulics.

Starting with the method of separation of variables, we find their solutions
subject to specific boundary conditions and the combination of such solution
gives the desired solution. Quite often a certain condition is not applicable. In
such cases, the most general solution is written as the sum of the particular
solutions already found and the constants are determined using Fourier series so
as to satisfy the remaining conditions.
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Vibrations of a stretched string (one dimensional wave Equation)
Consider a tightly stretched elastic string of length [ and fixed ends A and B and
subjected to constant tension T as shown in figure. The tension T will be
considered to be large as compared to the weight of the string so that the effects
of gravity are negligible.
Let the string be released from rest and allowed to vibrate. We shall study the
subsequent motion of the string, with no external forces acting on it, assuming
that each point of the string makes small vibrations at right angles to the
equilibrium position AB, of the string entirely in one plane.

Y

*

T/ x :
A B

4>X

Taking the end A as the origin, AB as the x-axis and AY perpendicular to it as the
y-axis, so that the motion takes place entirely in the xy -plane. Above figure
shown the string in the position APB at times t. Consider the motion of the
element PQ of the string between its points P(x, y) and Q (x + 8x, y + dy), where

the tangents make angles y and y + 8y with the x axis. Clearly the element is
2

moving upwards with the acceleration %t—zl . Also the vertical component of the
force.acting on this element

=T5sin (y +dy) - T sin y

=T (y+8y —y) -+ siny =y, as y is very small

=T dy (approximately)

2
The acceleration of the elements in the QY direction is %t% . If the length of PQ is

3s, then the mass of PQ is m.8s.

Hence, by Newton's second law, the equation of motion becomes
2

d
m8s—a—t—2)—’- =Ty
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azy T 3y
at m 3s
As Q —P, 3s —0. Therefore, taking limit as 3s —0, the above equation becomes
9 dy _T dy
o m Ss

Where %ly— = Curvature at P of the deflection curve
S

'y

a2
v _ ox 577 using formula for the radius of curvature

" ]

2
= gx%' approximately, since (%) is negligible because %i: is small
Oy _Tay
Tt? mox?

Putting—T— =C? (positive), the displacement y(x, t) is given by the equation
m

Py _ 9y

Er
This partial differential equation is known as one dimensional wave equation.
Solution of the one dimensional wave Equation
The one dimensional wave equation is

2 2

R 0
Assume that a solution of (i) is of the form y = X(x) T(t). where X is a function of x
alone and T is a function of t only.

2 2 2

Then 2 =x4T  an oy 94X
at de? ox? dx?

putting these values in (i), we get

1d°X 1 d°T

Xaa crae <) @
The (ii) leads to the ordinary differential equations.

2 2

%;(?f-kx 0 and %—tlr--kcz"r -0 (i)
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solving (iii) we get
(1) when K is negative say -p?, then
X = c1cos px + ¢z sin px

T = c3 cos cpt + ¢4 sin cpt (iv)
(2) when k =0, then

X=Csx+ Cs

T=CGt+Cs v)

(3) when k is positive say p?, then

X =CyepPx+ CygeP*

T = C11 et + Cpp e-cpt (vi)
of these three solutions we have to choose that solution which is consistent with
the physical nature of the problem. As we are dealing with problems on vibration
y must be a periodic function of x and t. Hence, the solution must involve
trigonometric terms.

Accordingly the solution given by (iv) i.e. of the form
y = (Ci cos px + Cz sin px) (Cs cos cpt + Cy sin cpt)
is the only suitable solution of the wave equation.

Example 5. A string of length L is stretched and fastened to two fixed points.
Find the solution of the wave equation yux = a2 yx, when initial displacement is

y (x, 0) = f(x) = b sin (n—f) where symbols have usual meaning.

(U.P.T.U. 2009)

Solution. Consider an elastic string tightly stretched between two points O and A.
Let O be the origin and OA as x-axis on giving a small transverse displacement
i.e. the displacement perpendicular to its length.

Y

&

P(x, y)
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lety be the displacement at the point P (x, y) at any time, the wave equation

yu = a2YXx
0 o’y
As the end points of the string are fixed, for all time,
y(0, t) =0 (i)
y(L, t) =0 (iii)
Since, the initial transverse velocity of any point of the string is zero, therefore
GYJ .
2| =0
( 3t )y )
Alsoy (x, 0) =b sin —7% v)
The general solution of (i) is
y = (C1 cos px + Cz sin px) (Cs cos apt + C4 sin apt) (vi)
Applying the boundary condition
y =0 atx =0
0 =C; (Cs cos apt + C4 sin apt)
C1 =0
Therefore,
y = C2 sin px (Cs cos apt + C; sin apt) (vii)

Again applying %% =0, att=0on (vii)

=C, sin px ap. (- C3 sin apt + C4 cos apt)

at
0=Czsin px. ap. C4 = C4 =0
Then (vii) becomesy = C; C; sin px cos atp (viii)

Applyingy=0atx=L
0 =C2 Cs sin pL cos atp
s sinpL =0=sinnt, n=0,123...........

s pL=nn
or p=2%
PeT

putting p= % in (viii), we have
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nnat
L

(ix)

y=CGs sin "= cos
L
Att=0,y=bsin%

b sin E=C2Casinn—ﬂ:x
L L

S GCGC=b,n=1
putting C2 C3 = b, n =1 in (ix) we get

y = bsin (B—)cos(n—atj
L L

which is our required solution.
Example 6. A string is stretched and fastened to two points ! apart. Motion is

started by displacing the string the form y = a sin % from which it is released at

a time t =0. Show that the displacement of any point at a distance x from one end
at time t is given by

y(x,t)=asin (Eli)cos(glgi)

Solution : Solving exactly just like as example 5.
Example 7 : A tightly stretched string with fixed end points x =0 and x =I is

(U.P.T.U. 2004, S.V.T.U. 2007)

initially in a position given by y = yo sin3% .

If it is released from the rest from this position find the displacement y (x, t).
Solution The equation to the vibrating string be

2 2

e O
Here the initial conditions are

y(0,t) =0, y(i, t) =0

g—i’=o att=0,y (x,0) =yo sin3£l’5
The general solution of (i) is of the form

y = (C1 cos px + Cz sin px) (C3 cos cpt + C4 sin cpt) (ii)
Now y =0 at x =0 gives C; =0
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~ y =Casin px (Cs cos cpt + Cq sin cpt) (iii)
Again %X 0 att=0gives C4=0

y = c2c3 sin px cost cpt (iv)
Atx=1y=0
0 = C2 G5 sin pl cos cpt
= sinpl=0=sinnn,n=0,12..........
.. n|
P
~y=CC, sinnTm(cos-ly—;C—t v)

Let C; C3 = b, As by is arbitrary constants
Therefore general solution is

Z b sin DX nﬂ:x n1;:ct (vi)

Att=0,y= y,sin’ ltli , so from equation (vi) we have

yosm( ) Zb inmtx
21X 3nx

=20 (BSm—X—sinS—mi) =b, sinE+b2 sin—=+b,sin——=+.........
4 l l

~by ==L, by=0, b, =-=% ,by=bs=bs=........... =0
1 4 2 4 4 5 6
Hence (vi) becomes
y(x,t)= Yo (Ssm X cos—c—t-—sm% s3£t_)
4 1 l l 1

Example 8: A string is stretched and fastened to two points | apart. Motion is
started by displacing the string into the form y =k (Ix -x?) from which it is
released at time t =0. Find the displacement of any point on the string at a
distance of x from one end at time t.

(U.P.T.U. 2002)

Solution

The vibration of the string is given by the equation
o’y o’y
—JocrZY .
atZ ax2 (l)
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As the end points of the string are fixed for all time,

y(0, t) =0
y(l, t)=0

(i)
(i)

Since the injtial transverse velocity of any point of the string is zero, therefore

and y(x, 0) =k (I x -

solution of (i) is

x2)

y = (c1 cos px + ¢z sinpx) (c3 cos cpt + ¢4 sin cpt)
Atx =0,y =0 givesc; =0

y = c2 sin px (c3 cos cpt + ¢4 sin cpt)

Att=0, ﬂ=0
ot

0 = ¢ sin px. cp. ca
S = 0

y = €2 €3 sin px cos cpt

Atx=1y=0

0=C2 G5 sin pl cos cpt

~ssinpl=0=sinnmt;n=0,1,23

(iv)
v)
(vi)

(vii)

(vii)

.= DT
o p l
y =C,C, sinnTm(cos—————m;Ct
LetC2 C3=Dby
r 3
p(x y)
0,0
©.0) \

nnx nnct

y=b, sin—T—cos———

As by is arbitrary constants and a differential equation

I

constants. Then we can write

B(, 0)

satisfy solution for all
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y= Zb sin n;rt s____m;ct (ix)

Att=0,y=k(Ix-x?)
(lx x) Eb smmtx

Applying half range Fourier sine series

b, =2 ! (x)sin > dx

2k ., N7X
b —T O(IX*XZ)SlanX
2k a1 21 2P
bn "T|:( 1) ' e + nsns]

2
b, = { 8513 ,whennis odd
n’n

0, when nis even

= 8k’ . nmx nnmct

= 53 Sin cos ,when n is odd
~n'n l l
2 2 2n-1 2n-1)nct
ory=3 8kl3 sin( n )nxcos( n-1)nc
m1(2n-1) n° ! !
Which is required solution.

 Example 9 Solve the boundary value problem
2 2
9y, = oy given that y(0, t) =0

otr  ox*’
y(5, t) =0,y (x, 0) =0 and (%yt—) =5sinnx
x=0
Solution: Applying the method of separation of variables to the wave equation
Py _pdy
atr T oax*

The suitable solution is

y = (C1 cos px + C; sin px) (Cs cos 2pt + C4 sin 2pt)
Applying the initial condition

y(x, 0) =0 we have

0 = C;5 (C1 cos px + Cz sin px)

= G =0
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ooy = Cy(Cy cos px + Cz sin px) sin 2pt
Now using y(0, t) = 0, we get

0=Ci Cysin2pt = C =0

- y = Cz sin 2pt sin px
Further y(5, t) =0 we have C; sin 2pt sin 5p =0

= sin 5 p =0 = sin nn
= p=“—5",n=1,2,3, ...........
Therefore,
=c sin(—nnz’c)sin(-l}—n}—)
- dy .
Also the boundary condition 3% = 5sinmx
x=0
nn’ (nnZt) . (nnx) :
oG, cos sin = 5sinnx
5 5 5
= n =5 and 2nc; =5

Therefore, we have
y= —5—-sin nxsin 27t
2n

Example 10: A string of length [ is fastened of both ends A and C. At a distance 'a'
from the end A, the string is transversely displaced to a distance 'd' and is
released from rest when it is in this position. find the equation of the subsequent
motion.
OR
Find the half period sine series for f(x) given in the range (I, 0) by the graph ABC
as shown in figure.

(U.P.T.U. 2009)
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Y
'3
B(a, d)
td
A(0,0) c@Lo)
le 1 N
€ i

Solution let y(x, t) is the displacement of the string Now, by the one dimensional
wave equation we have

d?y _,0% :
ot ¢ ox’ ®
The solution of equation (i) is given by
y(x, t) = (Ci cos px + Cz sin px) (Cs cos cpt + C4 sin cpt) (ii)

Now using the boundary conditions as follows
The boundary conditions are

Atx=0(atA),y=0 = y(0, t) =0
and Atx=[(atC),y=0 = y(l, t) =0
From (ii), we have

0=C;(Cscoscpt+Cy sin cpt) = C =0
using C; = 0 in equation (ii), we get

y(x.t) = C2 sin px (C3 cos cpt + C4 sin cpt) (iii)
, using second boundary condition, from (iii), we have

0 = C;z sin pl (C3 cos cpt + C4 sin cpt)

= sinpl=0 = sin pl = sin nx

o~ p=mT

l

using the value of p in (iii) we have
nmnct : mtct)

y(x,t)=C, sin—n—;z(C3 cos——+ C, sin—-

Next , the initial conditions are as follows:

(iv)

velocity Z—Z =0 att=0

and displacement at t =0 is
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El—')f, 0<x<a + Equation of AB is y= dx and
a
y(x,0)=
- d{x-1
d(x l>,a$xsl equation of BCis y = (x-1)
a-1 a-1l
From (iv)
dy - o gin AX(_nmecy . mmct  nmec, o nmct
at 1 ] l I !
using initial condition we get
0=c,c, P—In—c-.sinn—;ti =¢c,=0
using ¢4 =0 in equation (iv), we get
nnx nrct
y(x,t)=c,c, sm—r oS ——
~The general solution of the given problem is
2 b, sm—ry—ti co _____nflvct v)
Using initial condition in equation (v), we get
Eb sin P nnx
which is half range Fourier sine series, so we have
b, = %J-oly(x,()).sin#dx
2¢ad _ . (nnx 2 d ¢ . n7x
=7, ;—.x.sm(——l——)dx +—l-(é_—l)j'a (x- l)sm—l—dx
L (x- l)( -1 )cos nax (-1 sin DO l
I(a-1) nn 1o\’ ) 1 |
op o 2d  nma 2dr? sp @, 2d onma 2d? sin 12
" nm I aln’n’ I nn I la-Dn*n’ !
—b < 2dr? sin 2
" a(l-a)n’n’ !
. From (v), we get
2dl2 < o Xt
y(x,t)= P g nz sin—=.cos—
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Example 11: A lightly stretched string of length [ with fixed ends is initially in

equilibrium position. it is set vibrating by giving each point a velocity Vj sin’ 1‘11 .

Find the displacement y(x, t).
(I.A.S. 2004, U.P.T.U. 2003)

2
Solution The equation of the vibrating string is %—%’- =C? g }2’ 6Y)
X
The boundary condition are y(0,t) =0,y (I, t) =0 (ii)
Also the initial conditions are y(x, 0) = 0 (iii)
and (95—') =V, sin® & (iv)
ot )., l

Since the vibration of the string is periodic, therefore, the solution of (i) is of the
form

y(x, t) =(Ci cos px + Cz sin px) (Cs cos cpt + C4 sin cpt)
by (ii) y(0, t) = C1(Cs cos cpt + C4 sin cpt) =0
For this to be true for all time C; =0
=~y (x, t) = Ca sin px (C3 cos cpt + C4 sin cpt)
Alsoy (I, t) = Ca sin pl (C; cos cpt + Cy sin cpt) =0 for all t.

This gives pl =nn or p = nTn , n being an integer

Thus y(x,t)=C l (C cos & l D +C sn—l—t)

~y(x,t)=b sm%)-(—sinmnt

where by, = C, Cy

Adding all such solutions the general solution of (i) is

Eb sm-nn—xs' _c_n;_tt_ v)
Now 9_}’_=2b sin n1ltx.crlm cos cr;nt

By (iv), V,sin —l—_(?t,)‘_o =2—C-Pl—1£b“ sin21l—ti

or %(3sm—1£l§—sm§11-t-§)=zs%1-t-b —7;}-

=%, sin nx+_2_<£b i 2nx+iagbssin:—il;er ..............

1 l l l
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Equating Coefficients from both sides, we get
3V, cn 2cn V, 3cr

=—Db,, 0=—>b,, ——=—Db,............
4 17 1 4
31V, IV,
==L b,=——2% b, =b,=b, =..n........ =0
4’ e’ P 7

Substituting in (v), the desired solution is

( mX . cnt 3mx . 3cntJ
9sin 2 sin <= — sin 2~ sin 2

l I ! l
Example 12: A lightly stretched string with fixed end points x =0 and x =1 is
initially at rest in its equilibrium position. If it is vibrating by giving to each of its
points a velocity Ax(l - x). find the displacement of the string at any distance x
from one end at any time t.

y= 12cr

(U.P.T.U. 2002)
Solution. The equation of the vibrating string is

d’y o’y .
2 =C* L
e ®
The boundary condition are y(0, t) =0, y (I, t) =0 (ii)
Also the initial conditions are y (x, 0) =0 (iii)
and (2}’_) =Ax(l-x) (iv)

ot ),
As in example 11, the general solution of (i) satisfying the conditions (ii) and (iii)
is

Eb sin X gin 20 1 )
3—{ = ,Zb" sin—— ¢ mtct( )
By (iv), Ax(I-x)= (ay) =—n£Enb“ sin 22X
ot), | = I

. men

2! . nmx
; bn=—J'olx(l—x)s1n——l—-dx

_2: l nmx P . nnx B nnx \|
] |:(1X X )(—;;COST)—(Z—ZX)(—;‘TP-SIH——Z—)'F(—Z)(WCOST)}

4x12 4r? n
5.3 +(1-cosnm) = —=3 [1 -(-1) ]
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4\’ n
or b =——|1-(-1
r D, cn“n“[ (-1) :|

3
-— B takingn =2m-1

cnt (2m - 1) .

Hence, from (v) the desired solution is
8A & 1 . (2m-1)ax . (2m-1)nct
= m§="x(2m—1)4 sin l sin l
0y 0% :
Example 13. Solve completely the equation ¥=C el representing the
X

vibrations of a string of length , fixed at both ends, given that y(0, t) =0, y (I, t)= 0
y(x, 0) = f(x), and a%y(x,O) =0, 0<x<]

(U.P.T.U. 2005)
Solution Here the given equation is

9 9 .
F = 0
The solution of equation (i) is given by
"y = (C1 cos px + Cz sin px) (Cz cos cpt + Cs sin cpt) (ii)

Now, applying the boundary conditions y =0 when x =0, we get

0= C1(C;5 cos cpt + C4 sin cpt)

= C1 =0 '
Therefore, equation (ii) becomes

y = Cz sin px (Cs cos cpt + C4 sin cpt) (iii)
Now putting x =l and y =0 in equation (iii), we get

0 = C; sin pl (Cs cos cpt + C4 sin cpt)

= sin pl =0 = sin nt

orpl=nn=> p= %E
Thus, equation (iii) becomes

(iv)

y=GC, sin—nl—nx(C3 cosgﬁc—tw C, sinn—T;Ci)

Differentiating equation (iv) with respect to t, we get

—==C, sin—1| -C; —sin———+C, ——cos——

dy mtx( nnc . nnuct nnc nnct)
C, s
ot l l l l l
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dy

Using given boundary condition 5 0, t=0we get

0=C sm——l—(o +C, n1ltc)

= Cs=0
Thus, equation (iv) becomes
y=C,C, sin 2= co m;Ct
Now applying the last boundary condition given, we get

f(x)=b smn—71t§ bn=C2GCs

Where
= ——f sm———- dx

Thus, the required solutxon is
nmnx nrct

y=b, s1n—l—cos——l———

Solution of wave Equation By D' Almbert's Method

aZY = C2 a y

ot ax*

u =x + ct, v = x - ct and hence solve it. Show that the solution may be put in the

Transform the equation —5- to its normal form using the transformation

form y = —;—[f(x +ct)+f(x - ct)]. Assume initial condition y = f(x) and %}t/_ =0 at

=0
(U.P.T.U. 2003)
Proof. Consider one dimensional wave equation
2 2

ok )
Let u =x + ctand v = x - ct, be a transformation of x and t into u and v.
then

3y ay du ay ov 3y ay ,ou _

ox ou ax ovox au ov = ox

av
—=1
ox
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or

o’y 9 ay)_(a a)(ay ay)
i ax(ax “ou v \au Tav
aZy a2y azy a’zy
_a—uT+auav+avau+—8;2_
2 2 2
ay ay+2_a_..}.,_+i.¥.

C o o oudv v (i)

GO o dyav_ dy oy v

at “uat v 9t ou ov ot ot
0,_?_=c(i__a_)

ot du ov

IR e
o otl ot ou ov/\ du ov
o’y o’y dy

C(au 28uav+5?

Py _ oy oy oy
P AP § e SN, Y S
€ (au2 dudv * v’

marking use of equation (ii) and (iii) in equation (i), we get
2 2 2 2
C(ay 2 &Y, 3y)c(ay 23y+ayJ

=

(iif)

ou> dudv ov? ou’>  dudv ov?
o’y
4¢c? =0
= duov
o’y :
T )
Integrating equation (iv) w.r.t. 'v' we get
% = o(w) @
u
where ¢(u) is a constant in respect to v
Again integrate equation (v), we get
y = [o(u)du+,(v)
= y = o) + (V)
= y(x, t) = ¢1 (x + ct) + ¢2 (x - ct) (vi)
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The solution (vi) is D' Alembert's solution of wave equation.
Now, we applying initial conditions y = f(t) and % =0 att=0
From (vi), we getat t =0

f(x) = 01(x) + 02(x) (vii)

and %=c¢'(x+ct)—c¢§ (x - ct)

:(a_yj = 0=co) (x+0)— 6, (x~0)
ot Jo

=6, (x)~0;(x)=0

= 0 (x)= 0} (x)
on integrating, we get

0100 = 02(x) + 1 (vii)
using equation (viii) in equation (vii), we get

£(x) = da(x) +c1 + d2(x) =2 d2(x) + &1

=0, (x)=%[f(x)—c1]=> o, (X—Ct)=%[f(x-—ct)—-c1]

and ¢, (x)=—;—[f(x)+c1]=> 0, (x+ct) =%[f(x+ct)+c1]
putting the values of ¢1(x + ct) and ¢2(x- ct) in eqr(vi) we get
Y 1) = %[f(x + ct) + f(x-ct)]

VIBRATING MEMBRANE - TWO DIMENSIONAL WVAE EQUATION
Consider a lightly stretched uniform membrane (such as the membrane of a
drum) with tension T per unit length is the same in all directions at every point.
Consider the forces on an element 8x 8y of the membranes. Due to its
displacement u perpendicular to the xy plane, the forces Tdx and Tdy act on the
edges along the tangent to the membrane
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Téx

x + 8x

The forces Tdy (tangential to the membrane) on its opposite edges of length 8y act
at angles o and B to the horizontal. So, their vertical component

= (Tdy) sin B - (Tdy) sina
= Tdy (tanf -tanay), '+ o and P are very small i.e. sin a ~ tana etc.

(%) -3}
3

Sx

= Tdy &x |:

2

=Tdy ng—x‘; , upto a first order of approximation
similarly, the forces Tdx (the vertical component of the force) acting on the edges

2
of length dx have the vertical component = Téxdy — g

If m be the mass per unit area of the membrane, then the equation of motion of
the element ABCD is

2 2
maxayaaf=—T(g‘j gy )5 xBy

o2  miax?  ay?
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ori— c i-)z—u+ﬁl- whered® =L
ot? ox*  dy? m

This in the wave equation in two dimensions.

Solution of the Two-Dimensional wave Equation

The two dimensijonal wave equation is given by

Fu_ (o, P 0
e ax? ay2

Letu=XYT (ii)
be the solution of (i), where X is a function of x only, Y is a function of y only and
T is a function of t only.

82 d*u o*u
— =X"YT, 2 = XY"Tand S = XYT"
ax dy? ot?

substituting these values in (i), we get

Clz XYT"=X"YT + XY'T

Dividing by XYT throughout, we get
Tll X" Yll e
R MR (1)
ST XY
since each variable is independent, hence this will be true only when each
member is a constant. Suitably choosing the constants, we have

dxXx sz
+k3X =0, +y=0
dx? dy y=

2
and %—f+(k2 +P)PT =0
Hence, the solution of these equations are given by
X =c1 cos kx + c2 sin kx

Y =c3cos ly + cgsinly

and T = c; cos,[(k* +1?)ct +c,sin (k2 +1)ct

Hence form (ii), the solution of (i) is given by
u(x, y, t) = (c1cos kx + ¢z sin kx ) (c3 cos ly + ¢4 sin ly)

[cs cos,/(k? +1)ct+c, sin, [(k? +12 )ct} (iv)

Let is consider that the membrane is rectangular and stretched between the lines
x=0,x=a,y=0,y=b
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Now the boundary condition are
(1) u=0, whenx=0, forallt
(?) u=0,whenx=a,forallt
(3) u=0,wheny =0, forall t
(4) u=0,wheny=b,forallt

A

O y=0 A >X

Now using condition (1) in (iv), we get

0=c, (c,cosly +c,sin ly)[c5 Cos /(k2 + )t +c sin f(K* + 12 )ct}

=aca=0
substituting c; =0 in (iv) and using condition (ii), we get

. mn . .
sinka=0 or k=-—, where mis an integer
a

Hence solution of (iii) becomes

. maX . n : :
u(x,y, t)=c,c, sm——xsm——::l(c5 cospt + ¢, sinpt) (iv)
a
where p=mnc : + o
T = ke Rl
P a2 b2

Now replacing the arbitrary constants, we can write the general solution as

u(x,y,t)= i isin m:x sin%nz(Am cospt + B, sin pt) )

m=1n=1
Equation (v) is the solution of the wave equation (i) which is zero on the
boundary of the rectangular membrane.

Suppose the membrane starts from rest from the initial position.
u =f(x, y)ie. u(x,y, 0) = f(x, y)

Then using the condition %% =0, when t =0, we get Bmn =0
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Further using the condition u = f(x,y) when t =0, we get

f(x,y)= EZAmn sm——sm :y (vi)
m=1n=1

nuy

sin—= and
b

This is a double Fourier series. multiplying both sides by sin X

integrating from x =0 to x =a and y =0 to y =b, every term on the right except one
become zero. Thus, we have

f:fobf(x,y)sm . sm—nydydx——bA

_ 4 pagp . mnx . nmy
orA,, = a_bJ-O J'o f(x,y)sin sm—b—dydx (vii)

Therefore from (v) required solution is

u(x,y,t) Z EAmn s1n~——~—sanyc05pt

m=1n=1
mZ n2
where Amy is given by (vii) and p =nc (—2— + —62-)
a

Example 14: Find the deflection u(x, y, t) of a square membrane witha=b =1
and c =1, If the initial velocity is zero and the initial deflection is f(x,y) = A sin ntx
sin 21y

Solution : The deflection of the square membrane is given by the two
dimensional wave equation.

at? ax* oy’

The boundary conditions are
ux,0,t)=0=u(x, 1, tyand u(0,y, t) =0 =u(1, y, t)

The initial conditions are u(x, y, 0) = f(x, y) = A sin nix sin 2xy, (au) =0
t=0

at
. Deflection
u(x,y,t)= i iAmn cos k. tsinmnx.sin ny @)
m=1n=1

where A = 4J‘01 J'ol f(x,y)sinmnx.sinnmydxdy - a=b=1,c=1,k%, =n*(m? +n?)

= 4_[01 _[01 (sinx) (sin 27y ) (sin mnix) sin nity dx dy

202



Applications of Partial Differential Equations

Y
N
1)
1)
> X
© 1,0
on integration, we find that Apu = Ams = Amu = ............ =0

But
A, = 4Aj'01 J.Ol (sin 7x)(sin mnx)sin® 21y dxdy

= 2AJ'01 '[(: (sin mix)(sin mnx)(1 - cos4ny ) dxdy
o 1 ’
= ZAIO sintxsin mnx(y - ZT—t-sm 4ny) dx

0

= ZAL: sin tx sin m7ax dx
on integration we find that An =Asn=............... =0
Also we find A,, =2A I 01 sin x sin Tx dx
= A 2sin’ mxdx
= AJ: (1-cos2mx)dx
1 1
= A(x ——sinan) =A
2 0
Thus, from (1), we have
u(x, y, t) = Az (cos kiat) (sin nx) sin 2wy
=A cos /5 nit sin x sin 2y
vk =n? (17 +22)iek,, =m/5
sincec=1,m=1,n=2

ONE - DIMENSIONAL HEAT FLOW

Consider a homogeneous bar of uniform cross section A. Here we assume that
the sides of the bar are insulated and the loss of heat from the sides by
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conduction or radiation is negligible. Take one end of the bar as the origin and
the direction of flow as the positive direction of x axis. Take k be the thermal
conductivity 's' the specific heat and p be the density of the bar. The temperature
u at any point of the bar depends on the distance x of the point from one end and
the time t. The amount of heat crossing any section of the bar per second depends
on the area A of the cross section, the rate of change of temperature with respect
to 'x' (distance) normal to the area.

v
b

O
One dimensional heat flow

Therefore i, the quantity of heat flowing into section at a distance

x =-kA (é—u—) per second. (The negative sign indicates that as x increases,
X

u decreases). Q,, the quantity of heat flowing out of the section at a distance

X +0x = kA (a_u) per second.
aX x+8x
Hence, the rate of increase of heat in the slab with thickness dx is
Q,-Q,=kA K—a—gj - (Q-‘l) ] per second (i)
aX x+8x aX X
But the rate of increase of heat of the slab = spAﬁx%% (ii)

From (i) and (ii), we get

du Ju du
kAl i
SPASX S =k [(ax) (ax)x]

&) (5)
Jdu 0X )5 \OXJ,

ok
o S5 dx
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Taking limit as 6x —0, we have

S 91.1__1(_8—23
Pot = o
u_k
ot spox?
du u ..,
or —5{=ng<7 (iii)

where ¢* = L is called the diffusivity of the material.

Equation (iii) is called the one-dimensional heat flow equation.

Solution of one-dimensional heat Equation
2

The equation of one dimensional heat flow is %% =c? %—g (i)
X

Assume that a solution of (i) is

u =X (x). T(t)
where X is a function of x alone and T is a function t alone.

du ,ou L, u_ L,
Then —5t—=XT,—é—;(—=X Tand-a—;2—=X T
Putting these values in (i), we get
XT'=C2X"T=>2(1=—F£:— (if)
X T
Now L.H.S expression is a function of x only while R.H.S is a function of t only,
so the two can be equal only when these are equal to a constant, say k.

= ie. X" =kX
=3 ie
2
or 3:2( ~-kX=0 (1ii)
and 9% kT =0 (iv)
dt

There are arise following cases:
Case I. when k > 0, let k=p?

2
Then X=cierx+cePxand T=c3 e Zpht

Therefore u(x, t) = (cieP* + c2ePX) ca e A
Case II. when k<0, let k= -p?

205



A Textbook of Engineering Mathematics Volume - 11

. 22
Then X = ¢4 cos px + cssin px and T = cge <P

Therefore, u (x, t) = (c4 cos px + cssin px) cee <Zp%t
Case III when k =0, then
X=cx+cgand T=c,

Therefore u(x, t) = (c7x + cs) ¢,

Here we are dealing with the heat conduction problem so the temperature u
decreases with the increase of time t and hence solution given by case II is
appropriate.

ie. u(x, t) = (cicospx + cz sinpx) c3 e<*p*t is the only suitable solution of the heat
equation.

Fourier series solution of one-dimensional heat equation

Applying the boundary conditions and the initial condition, we get

- ATIX -n?n?c?t
u(x,t)=2bnsinTe !
n=1

where b =Z‘[If(x)sin%dx
[0 l

du ou’
Remark: In steady state i 0, so 3 0
Example 15 An insulated rod of length [ has its end A and B maintained 0°C and
100°C respectively until steady state condition Prevail. If B is suddenly reduced
to 0°C and maintained at 0°C find the temperature at a distance x from A at time
t
(U.P.T.U.2004, 2005)

. Solution: The equation of one dimensional heat flow be

ot ox?
The boundary conditions are

(a) u(0, t) = 0°C and (b) u(J, t) = 100°C

()

In steady state condition E?)_ltl =0, here from (i) we get
ox*

on integration, we get u(x) = cix + c2 (ii)

0

where ¢1 and c¢; are constants to be determined.
At x =0, from equation (ii), we have
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0 = C2
andatx=1[,100=c11+0 =c, =l?_9
- form (ii)

100

u(x) == (iif)

Now the temperature at B is suddenly changed we have again transient state. if
u(x, t) is the subsequent temperature function, the boundary conditions are (a')

u(0,t)=0°C  (b') u(l, t) = 0°C and the initial condition (c') u(x,0)= 100

since the subsequent steady state function us(x) satisfies the equation

2
d u2s -0
ox
d2
or d;; =0=u,(x)=cx+c,

atx =0, wetget0=ocy

and at x = [, we get

0=c3l+0=>c3=0

Thus us(x) =0 (iv)
If u; (x, t) is the temperature in transient state then the temperature distribution
in the rod u(x, t) can be expressed in the form u(x, t) = us (x) + u (x, t)

= u(x, t) = u,(x, t) sinceus(x)=0 v)
Again from heat equation we have

u; *u, )
x (vi)

The solution of equation (6) is

u; (x, t) = (c4 cos px + c2in px) ada (vii)
Atx=0,u(0, t) =0
= 0=ce<Pt = c1 =0
From (vii), we get
u(x, t) = c2sin px c3ecp?t (viii)
Againatx =1, u(l, t) =0
= 0 = ciczsin pl .e~<p*
= sinpl=0=sinnn
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=>p= T
From (viii), we get

n‘c'nt
12

. n7X
u(x,t)=c,c, sin—-. e

n’c?n?t

c nnx -——3 .
t)=) b, sin—.e !
) ; 2Sin——.e (ix)

using initial conditionie.att=0, u= gx ,we get

_ 100 Zb mtx

u
= —Illp—qx sin%zdx
200 . NAX 200 xI rmx P . nnx]
— xsm———dx— 5| ———cos +——5sin
l l l nn 1 n'n 1 R
2
=b = 3(?—[-—l—cosn ] = @9(_1)"'4
l nmn nn
Hence from equation (ix) we get
= (-1 n+l _nzc;ﬂ.’t
u(x’t)-_:@ .(_.__)_:.__sinn_m‘e I
T n l :

Example 16: Determine the solution of one dimensional heat equation

2
2% subjected to the boundary conditions u(0, t) =0, u(l, t) =0 (t >0) and

the 1rut1a1 condition u(x, 0) =x, I being the length of the bar.
(LA.S. 2007, U.P.T.U. 2006)

Solution: We have

2
Hoall 0
we know that the solution of equation (i) is given by
u(x, t) =(cicos px + c2 sin px) c3 e (ii)
Atx=0,u=0
= 0 =c; caePe
= C1 =0
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From (ii) we get

u(x, t) = coc3sin pxe Pt (iii)
Againatx =l, u =0

= 0 =cac3sin pl. epPcit

= sin pl =0 = sin nn

o peX

l
From (iii) the general solution of equation (i) is

n’cn?t

x t)=ibn sin—’l’lf’i. P (iv)
n=1

Att=0,u=x

nrnx

1
l( nnx) - nmx l
I sm—dx— —cos -| —=sin
l nn l n’n 1
22 l—l—(—cosnn)+—£—sinmt —01
I n’n?

SO TR RS °

=D X= Zb sin—

nw

putting the value of b in equation (iv), we get

n®cn’t

A& (<D x2S
u(x,t)=— ) ~———sin—.e !

( ) T E n l
Example 17: The ends A and B a rod 20 cm long have the temperature at 300C
and 80°C until steady state prevails. The temperature of the ends are changed to
. 400C and 60°C respectively. Find the temperature distribution in the rod at time

t. (LA.S. 2005)
Solution : The heat equation in one dimensional is
du_ ,0%u :
R ®
The boundary conditions are
(a) u(0, t) =300C (b) u(20, t) =80°C

In steady condition %:— =0

209



A Textbook of Engineering Mathematics Volume - II

2
. From (i) we get g——lzl =0, on integration, we get

X
u(x) =c1x+c2 (if)
at x=0,u=305030=0+c; = c2=30

and atx =20, u=80s080=¢120+30 =, =§
From equation (ii) we get
u(x)= 5—2X +30 (iii)

Now the temperature at A and B are suddenly changed we have again gain
transient state.
If u,(x, t) is subsequent temperature function then the boundary conditions are
u,(0, t) = 40°C and u, (20, t) = 600C
and the initial condition i.e. at t =0, is given by (iii)
Since the subsequent steady state function us(x) satisfies the equation
o*u, 0 or d’u, _
n dx*
The solution of above equation is

0

us(x) = cax + ¢4
Atx=0,us=40=>40=0+cy=>cs =40 " us(0) =400C
us (20) = 60°C

and atx=20,us=60=> 60=20c3+40 =c3=1

- form (iv), we get

us(x) =x + 40 v)
Thus the temperature distribution in the rod at time t is given by

u(x, t) = us (x) + u; (xt)

= u(x t)=(x+40)+u (x t) (vi)
where ur (x, t) is the transient state function which satisfying the conditions

u; (0, t) = u1 (0, t) - us(0) =40 - 40 =0

u; (20, t) = w1 (20, t) - us(20) = 60 - 60 =0

and u (x, 0) = u1 (x, 0) - us(x)

= X 1 30-x-40=X_10
2 2

The general solution for u (x, t) is given by
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n’c?n’t

up (x,t)=3b, sinx e F (vii)
n=1 20
At t=0, from (vii) we get
3x n7uxX

2X_10=3'b, sin
2 21 S0

b, == [® ~3l-lo}sinl‘ﬁ’idx
2070 20

1 [(3x 20 nnx) 3( 400 nnx\[°
=—|{—=-10 || -——cos—— |~ —| ——5—5 cos——
10(\ 2 nm 20 ) 2\ n’n 20

0
-l <20 22 Jieay - (10) 2
10 nn nm
20 n
=——1|2(-1) +1
—[2(-1)"+1]
putting the value of br in equation (vii), we get
o _1\" -n’n’ct
(OS2 AL X T (viii)
T =1 n 20

From (vi) and (viii), we get

up (x,t) =

20 2(-1)"+1 . nmx -mmet
)= (x+40)-=Y e W
u; (x,t) = (x +40) mp V. sin—~-¢
TWO - DIMENSIONAL HEAT FLOW

Consider the flow of heat in a metal plate of inform thickness a (cm), density p
(gr/cm3), specific heat s(cal/ gr deg) and thermal conductivity k (cal/cm sec-deg)
Let XOY plane be taken in one face of the plates as shown in figure. If the
temperature at any point is independent of the z coordinate and depends only on
x, y and time t, then the flow is said to be two-dimensional. In this case, the heat
flow is in the XY plane only and is zero along the normal to the XY-plane.

Y
A
,y+d
D(xy+dy) 1 C (x+5%,3+3y)
—> —»>
A(xly) T B(x+8x,y)
o) > X

211



A Textbook of Engineering Mathematics Volume - II

Consider a rectangular element ABCD of the plane with sides 8x and dy.
The amount of heat entering the element in 1 sec. from the side AB

du

= —kod
* x(ay

and the amount of heat entering the element in 1 second from the side AD

du
= —kady| &
* y(ax)x

The quantity of heat flowing out through the side CD per sec

= —kadx (g—u]
y y+3y

and the quantity of heat flowing out through the side BC per second
du

= —ka5y (a—x)
X+8x

Hence the total gain of heat by the rectangular element ABCD per second

= —kodx qul _ kaﬁy(éli) +kadx du + ka&y(é—g)
ay ax ay aX x+8x
y X y+8y
du du du du
=kodx| | — -l =1 |+ kaﬁy[(——) - (——) :l
l'( ay Jywy ( ay )y :l dx x+8x ox x
OX Juusn  \OX )y + % y+8y Iy y

dx dy

J (see one dimensional heat flow)
y

= kodxdy

Also the rate of gain of heat by the element
du
= pSxSyos —
POXOY oS o¢
Thus from equation (i) and (ii)
du (au (?ﬂ} - (a_u]
(—&—)ﬁsx -&)x + % y+3y %Y y

Ox dy

du

ot

kadxdy = pdxdyas

Dividing both sides by o 8x 8y and taking limits as 8x —0, dy — 0, we get
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2 2
k(a u+a u)_p Ju

e oyt ) ot
., ou ,L[du d%u
1.e.6—t-=c —a?-*-gy"z‘ (lll)

where & =X is the diffusivity
s

Equation (iii) gives the temperature distribution of the plate in the transient state.
Cor. In the steady state, u is independent of t, so that %:— =0 and the above

equation reduces to,
ox*  dy’

and this is called Laplace's equation in two dimensions.

Solution of Laplace Equation in Two Dimensions

Laplace equation in two dimensions is given by
d’u  d*u
—+-—=0 i
a2 oy? ®
Let u = XY be a solution of (i)

where X is a function of x alone and Y is the function of y alone.

*u o*u

0

Then 5;2-=X"Y and 5},—2=XY"
Substituting these values in (i), we get
X"Y + XY" =0
or l)((— = —Xy— (if)

Now in equation (ii) variables are separable since x and y are independent
variable, this equation can hold only when both sides reduce to a constant, say k.

ie. Z(—|=——\£=k
XY
2 2

- 3X _xx=0 and  9Y41Ky=0 (i)
dx dy

Solving equation (iii), we get
(a) when k is positive say p?, then we have
X=c1 eP* + coe P, Y = c3cos py + ¢4 sin py
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(b) when k is negative say -p?, then we have
X'=cs5 cospx + ce sin px, Y = cy ePy + cge-PY
(c) when k =0, then
X=cgx+C, Y=Cuny+Cn
Thus the various possible solution of (i) are

u = (c1 ePx + ¢z ePX) (c3 cos py + ¢4 sin py) (iv)
u = (s cos py + g sin py) (c7 ey + cg ePY) (v)
u = (cyx +c10) (C11y + c12) (vi)

of these we take that solution which is consistent with the given boundary
conditions, i.e., physical nature of the problem.
2 2

Example 18: Solve the Laplace equation Ju

" + 5? = 0 subjected to the conditions

u(o,y)=u(,y)=u(x 0)=0and u(x,a)=sin .flflfi (U.P.T.U 2004)

Solution. The three possible solution of

*u  d’u .
5)'(—2- + 'a?' =0 (1)
Y
t y=a, u= sin{nnx/I)
Dey%) | C (x+8x,y+8y)
x =0
o %
u=0 u=0
A (xy) T B(x+dx,y)
0 y=0 >
u=0
are
u = (c1 ePx + 2 eP¥) (€3 cos py + ¢4 sin py) (ii)
u = (s cos px + Cs sin px) (c7 ePY + cg €PY) (iii)
u = (cg x +c10) (C11 y + €12) (iv)
we have to solve (i) satisfying the following boundary conditions
u(0, y) =0 v)

u(, y)=0 (vi)
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u(x, 0) =0 (vii)
u(x, a) = sin nnx/1 (viii)
using (v) and (vi) in (ii), we get
¢1+c2=0,and c; ePl +c2 ePl =0
Solving these equations, we get c1= c2 =0, which lead to trivial solution. similarly
we get a trivial solution by using (v) and (vi) in (iv). Hence the suitable for the
present problem is solution (iii), using (v) in (iii),
we have cs (c7 ePY + cg ePY) =0 i.e. ¢s =0
- (iii) becomes u = c¢ sin px (c7 ePY + cg e"PY) (ix)
using (vi), we have cs sin pl (c7 epY + cg e-PY) =0
».either cs =0 or sinpl =0
If we take c¢ =0, we get trivial solution
Thus sin pl =0 = pl = nn

=p= %E ,wheren=0,12...........
. (ix) becomes u = ¢, sin (P%)(g ™/l 4 cse'“"”') )

Using (vii), we have o = ¢, sin (nTnx)(C7 +cg)ie cg=-c7
Thus the solution suitable for this problem is
u(x,y)=b, sin—n?—x(e“"y” - e'“"y”) where bn = cs ¢7

Now using the condition (viii), we have

_@_’i(enm/l e/l )

u(x,a)= siny;—x =b_sin l

1
we get b, -————————(em/, —e'“’“/’)
Hence the required solution is

nny /1 _e-nny/l nmx
u(x,y)= sin
(x,y) o/l _ g-nmall ]

_sinh(nmy /1) . nmx
=u(xy)= sinh(mta/l)sm I

Example 19: A thin rectangular plate whose surface is impervious to heat flow,
has at t =0 an arbitrary distribute of temperature f(x, y), if four edges x =0, x =a, y
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=0, y =b are kept at zero temperature. determine the temperature at a point of the
plate as t increases.

(U.P.T.U. 2002)
Solution The two dimensional heat equation is

dou ,L{d0’u d*u
—= == 1
- (ax2 +ay2] @)

k
where ¢ = —
o

The initial temperature of the plate is f(x, y) and the temperature of the four
edges of the plate are kept at zero temperature.

Now the function u(x, y, t) is required to satisfy (i) and the boundary and initial
conditions given below:

The boundary conditions are

Y
A
Temp(zero)
° t
8T y=b + Temp(zero)
=
g
=
x=0 X=a
o } > X

u(o,y,t)=0 (i)

u(a, y, t)=0 (i)
u(x,0,ty=0  (iii)
u(x,b,t)=0 (iv)

and the initial condition is

u(x,y, 0) = f(x, y) @
Let the solution of the heat equation (1) be of the form

u(x, y, t) = X(x) Y(y) T(t) = XYT(say) )
where X is a function of x only, Y is that of y only and T is that of t only.

using (3) in (1) we get

1dT_1d°X 1d%
T dt Xdx* Ydy?
Hence in order that (3) may satisfy (1) we have of these three possibilities :
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2 2

@ 18X o 1Y, 1dD

X dx Y dy T dt

1d?X 1 d%Y 1 dT
B el - 2/ il = 2, 2 R?
BXxee P Y o P T

1 d*X 1 d*Y 1 dT
C it 2, - 2[ e =2
( ) X de pl Y y2 p2 CZT dt

where p® =p? + p?
It can be easily observed that differential equation (C) only gives the solution for
this situation, and the general of the differential equation in this case is

X = Aj cos p1 x + By sin pix

Y = Az cos p2 y + B2 sin pay and T = Az e Pt
= u(x,y,t) = (A1 cos p1 X + B; sin pix) (A2 cos p, y *+ B, sin pzy)e“czpz‘ 4)
where A, =A,A,, B, =B,B,
Under boundary condition (i) we get

u(o,y,t)= (A cos p, y + B, sin sz) Pt
= A1 =0
Again using (ii)
u(a,y, t) =B, sinpla(A'2 cosp,y+ B, sin pzy)e‘czpz' -0
sinpra=0 = pia=mn = p, =% wherem=1,2,3..........
a

similarly, making use of (iii) and (iv), we obtain

A,=0 and p,= —B—- (n=1,2,3............ )
Thus we have
u,, (x,y,t)= A, e P mt sin X gin 2
a b
m? n?
where p* =pZ, =7 ( bz)
=u(x,y,t) ZZAmne‘c Phot gin L X smp—g—y— (5)
m=1n=1

This solution satisfies the boundary conditions.
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Now to derive the solution which satisfies the initial condition also, we proceed
as follows:

=u(x,y,0)= i iAm"e‘CZ"i‘"t sin m::x sinPbﬂ =f(x,y)

m=1n=1

Hence, the L.H.S is the double Fourier sine series of f(x,y)

AL L Of 3 (x,y s1n sm—n—ldxdy (6)

Hence the requlred solution of heat equatlon (1) is given by (5) with coefficients
given by (6)
Example 20 Solve the P.D.E by separation of variables method u.x = uy+ 2u,

u(0, y) =0
ad
—u(0,y)=1+e™
= u(0)
(U.P.T.U. 2009)
Solution Hint. XY Y+2Y =K(say)
= X =c,e™ +c,e ™Y = e

u=XY

Therefore u (x, y) = % .sinhv/2x + sin.e”%

EXERCISE
Solve the following P.D.E. by the method of separation of variables.
1 3%2—+23—;—0 given u(x, 0) = 4ex
Ans. u(x,y)= 4e2(3y )
’z  dz
2. —+4—=0
ox* oy’

Ans. z= (cle kx cze‘ﬁx )[c3 sin—;-\/lzy +c, cos%\/?y)

3. —+ 28—1: +u,, u(x, 0) = 6e-3

(U.P.T.U. 2006)
Ans. u(x, t) = 6el-3x+2)
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Ju Ju

4. Za——3a—-—0 , u(x, 0) = 5e3x
X y
Ans. u(x,y) =5e3x+2%y
5. 3a_u + 2—a—11 =0
dx 9y
(U.P.T.U. 2009)
1
Ans. u(x,y)= ced )
2 2
6.  The vibrations of an elastic string is governed by the P.D.E. g 121 = —g——z— The

length of the string is m and the ends are fixed. The initial velocity is zero and the
initial deflection is u(x, 0) = 2 (sin x + sin 3x). Find the deflection u(x, t) of the
vibrating string for t > 0.

Ans. u(x, t) =4 cos x cos 2t sin 2x

7.  find the displacement of a string stretched between the fixed points (0, 0)
and (1, 0) and released from rest from position a sin x + cos 2nx.

Ans. u(x, t) =a sin nx cos nct + bsin 21x cos 27ct

2 2

8.  Solve the wave equation Ztu =c g ‘: subjected to the conditions

G u0t=ul,t)=0t>0

) u(x,0)= (LA.S 2006)

(i) (a—“) =0, 0<x<I

Ans. u(x,t) ——-—%Zizs' T in P s ATCE
9. A tant string of length 2! is fastended at both ends. The mid point of the
string is taken to a height b and then released from the rest in that position. Find
the displacement of the string.

(2n-1)nx _ (2n-1)nct

89 1 i (2n- 1)-1E sin cos

Ans. y(x, —
Y= 2y 2 2 21
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10. find the temperature u(x, t) in a homogeneous bar of heat conduction
material of length I cm with its ends kept at zero temperature and initial
temperature is dx(I -x)/I2

x 2n-1 2.2 /12
Ans. u (x,t) = gj_ 1 ~sin ( n-1)mx pl2m=1) iy
T A (2m-1) 21
11.  Solve the following Laplace equation
2 2
9 :1 + a_u =(
ox” ay2

in a rectangle with u(0, y) =0, u(a, y) = 0, u(x, b) =0 and u(x, 0) = f(x) along x axis.
(U.P.T.U. 2008)

fad hny o
Ans. u(X/Y)‘_‘EbnsinB-;E{e 3 e Y Zb)}
n=1

where b, = —g~—faf(x)smn—mdx
0 a

2nnb
a(l—e @ J

12.  Find the temperature in a bar of length 2 whose end are kept at zero and
lateral surface is insulated if the initial temperature is sin% + C’:sin—“rlg->§
(U.P.T.J. 2009)
Solution
ou d*u
Hint. Heat equation — =c* —
E ot ox*
u(x,t) = (c1 cos px + c2 sin px) (c3 e-czpzt)
u(0,t)=0=c; =0

u(l, t) =0 = p=317£

—cinin?t

u(x,t)= ibn sin—rylz.e ’

n=]

where b, = J.z sin 2 + 3sin@<~ sin 2% dx
0 2 2 2
Choose the correct answer from the following:
oz , 0%z

1. One dimensional wave equation oy c Pl is:
x
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elliptic  (b) parabolic () hyperbolic (d) circular.
Ans. (c)
2
One dimensional heat flow equation M iﬁ;— is:
ot 0x
circular (b) hyperbolic () parabolic (d) elliptic.
Ans. (c)
, : . o du  du .
The two dimensional heat flow equation in steady state Py + -a;; =0 is:
x
elliptic  (b) circular (c) parabolic (d) hyperbolic.
Ans. (a)
2 2 2
The differential equation 4 _6_% + 4_¢2_u_ + 6_1; =0 is:
ox Oxdy Oy
parabolic (b) elliptic (c) hyperbolic (d) circular
Ans. (a)
2
The general solution of Y =0is:
u=fix+y)+Ly) (b) u=f@)+LY)
u=f(xy) d) u=f@y+fLY)
Ans. (a)
2 2
The partial differential equation —a—L: = -Q—l:— is:
ox" oy
hyperbolic (b) parabolic (c) elliptic (d) circular.
Ans. (a)
The partial differential equation 9 u - Qu, du Ois
P 4 " axdy oy
hyperbolic (b) elliptic (c) circular (d) parabolic
Ans. (d)
The two dimensional heat equation in the transient state is:
2 2 2 2 2
ou_ 2 5_‘2‘+6_”2£ (b) 6_124=C2 9}_2‘.+-a—%
ot ox® oy ot ox* oy
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u  Pu ou _ (0u  ou
“zt 57 ¢ d) —=clz=z+
ox~ oy ot ox® oy
Ans. (a)
2 2
The two dimensional wave equation _6_214_ =c? Q—L:— + —612 is:
ot ox* oy
circular (b) elliptic (c) parabolic (d) hyperbolic.
Ans. (d)
The Laplace's equation in polar coordinates is:
Fu ou 1 du Pu 1ou_ 1 du
—t—+t5 —=0 b) —--——+5 =0
or* or r* 00 (b) or* r or 1’ 06
u 1 ou_ 1 du u ou 1 &u
=t = =t = —==0 d) —S5-—+-—=0.
or* r or r* 96° @ or* or r 06
Ans. (¢)
The radio equations are:
2 2 2 . 2 2 .
9 e and el ) Warc W and E-1c
Ox ot Ox ot Ox ot ox ot
2 2 2; 2;
9V c1cZand ZL=1c 2l (@) noneof these.
Ox ot ox ot
Ans. (c)
The telegraph equations are:
2 2. . . .
%Y -rc L and ZL=rc 2 1) L -rRcana L =rcZ
ox ot Ox ot ox ot Ox ot
2 2 2; 2;
6_12/ =RC 6_: and 9—;— =RC 9—21— (d) none of these.
ox ot Ox ot
Ans. (a)
The equations for submarine cable are:
. 2 2.
% - RGvand 2 =RGi ® ¥ =RGvand 2L =RGi
Ox ox ox ox
2 2; 2 2;
g—;=Rcanda—;=RG &) Z¥-Rvand 2L =Ri
x Ox ox ox
Ans. (a)
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Fill in the blanks in the following problems:

2 62u

The partial differential equation % =c pw) is of......type.
x

Ans. Parabolic

When a vibrating string has an initial velocity, its initial conditions are......

3\
Ans. (@J =y
Ot Ji-y

2

The solution of Ou
X0y

=0 is of the form.

Ans. u=fi(4)+f ()

o*u o*u
The equation ~— = ¢? —
9 ot ox?

is calssified as.......

Ans. Elliptic partial differential equation
In two dimensional heat flow, the temperature along he normal to the xy-

Ans. Zero

82 y 62
D' Alembert's solution of the wave equation —% = ¢? 2 s

ot? ox?

Ans. y(x B =%[f(x+ct)+f(x—ct)]

Select True 'or' False answers in the following:

2
The solution of % = sin (xy) is - y* sin (xy) + x f; (x) + £, ().
x

(False)
. . *u u . .
The general solution of the equation Pl i 0 is (Ci1 cos px + (3 sin
x
px) (Cs cos pt + Cy sin pt).
(True)

2 2
The two dimensional heat flow in transient state is ?—Li =2 _6__124 + ?_}; .
ot Ox oy

(True)
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2 2. .
10.  The telegraph equations are -‘?——; =RC o and 6_; =RC a
Ox ot Ox ot
(True)
2 . 2.
11.  The radio equations are v - LC oy and 2 . LC 6_21
ox? # Ox ot
(False)
u  u  du
12.  The Laplace's equation in three dimensionsis — + — + — =0
ox oy 0z-
(False)
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