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Chapter 1

Revision

Most of you will already be familiar with this material. It is collected here to remind you
of some of the things we rely on before starting our discussions.

Remember also that your next Engineering Mathematics Course will also have a list of
prerequisites. It will include the list here, but will also include the material we are about to
cover. There is a real advantage in mastering this material during this course rather than
have it hanging over you later.

1.1 Powers

For any real number x and any positive integer n, xn is taken to mean the product
x.x.x. . . . .x (n terms).

This is just a matter of notation, introduced for convenience. Observation and counting
now give us the following rules, known as the laws of indices.

xmxn = xm+n

(xm)n = xmn

These are important. You must know and be able to use them.
The notation xn is so compact and convenient that we extend it to cover situations

when n is not an integer. This is done in such a way as to ensure that the laws of indices
continue to hold.

1.1. Definition. x0 is defined to be 1 for all x.

Note that this definition is forced on us if we are to keep the first law.

1.2. Definition. For any non-zero real number x and any positive integer n, x−n is defined

to be
1
xn

.

So, for example, x−2 is the same as
1
x2

. Again, this definition is necessary if you are to
retain the first law.

1.3. Definition. For any positive real number x and any positive integer n, x
1
n is defined

to be the n-th root of x. More precisely, it is that positive real number whose n-th power
is x.

x−
1
n is just the inverse of x

1
n .

1
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So, for example, x
1
2 =

√
x and x−

1
2 =

1√
x

Note that
√

x is always the positive square

root. If you want the negative square root you write −√x. Once more, the definition is
forced on us by the second law. The restriction to positive x is to avoid problems with
things like square roots of negative numbers.

For other fractional powers you just assemble in the obvious way, e.g. x
2
3 is the square

of x
1
3 or the cube root of x2. In general for positive real x

x
m
n = (xm)

1
n

or
x

m
n =

(
x

1
n

)m

These are equal - but sometimes one is easier to compute than the other, e.g. 9
3
2 =

(
9

1
2

)3
=

33 = 27 is easier than 9
3
2 =

(
93
) 1

2 =
√

729 (= 27).

Here are some examples of working with powers to practice with.

1.4. Example. Simplify the following expressions: x2/3x−3/2, (x−1√y)3/2.

1.5. Example. Expand out the following brackets and simplify the results: x1/3(x2/3+y1/3),
(x1/2 + x−1/2)(x1/2 − x−1/2).

1.2 Algebraic Manipulation

Manipulating indices is just one of the skills we shall rely on you having. The remainder of
this Chapter reminds you of more background we assume you have. In addition, you are
expected to be able to manipulate expressions — write them in equivalent ways which may
be simpler, are more convenient.

Here are some examples of basic algebraic manipulation to practice with.

1.6. Example. Multiply out the following brackets and tidy up your results.

(x + 1)(x− 2), (2 + x)2(1− x), (1− x)(1− y)(1− z)

1.7. Example. Simplify the following expressions by taking each of them over a common
denominator and then tidying up.

1
x + 1

− 1
x− 1

,
1 + x

1− x
− 1− x

1 + x

1.3 Summations

Notation can be a help or a hindrance, depending on how familiar you are with it. Here we
discuss the summation notation.

The Greek capital letter Σ is used to indicate a summation. The terms that come after
the Σ describe the form of the terms to be added together, and the decoration top and
bottom of the Σ specifies a range.
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1.8. Example. Write out
6∑

k=1

k2 explicitly.

Solution The sum is shorthand for 12 + 22 + 32 + 42 + 52 + 62 — the sum from k = 1 to
k = 6 of all terms of the form k2.

1.9. Example. Write out
7∑

r=0

(2r + 1)3 explicitly.

Solution The given sum is the sum from r = 0 to r = 7 of all terms of the form (2r + 1)3

and so is 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153.

The way in which the range is described can vary.

1.10. Example. Write out
∑

1≤k≤6

k2 explicitly.

Solution The sum is read as “ the sum for all k between 1 and 6 of k2”. So it is just
another way of writing the sum from the Example 1.8.

In more advanced work you can get “double sums”. Here there will be two control
parameters rather than one to describe the pattern, and you will be given a summation
range for each.

1.11. Example. Write out
3∑

r=1

4∑
s=1

rs2 explicitly.

Solution Here we have the sum of all terms of the form rs2 for the given ranges of r and
s. To expand it, first fix r at its lowest value and let s run over the range described; then
move r to the next value and repeat; and so on. With this example the expansion is

(1.12 + 1.22 + 1.32 + 1.42) + (2.12 + 2.22 + 2.32 + 2.42) + (3.12 + 3.22 + 3.32 + 3.42).

With double sums the range descriptions can get quite fancy. You just have to read it
to yourself and think about what is being said.

1.4 The Binomial Theorem

The Binomial Theorem is an important theorem, useful across a wide range of math-
ematics. It gives you a fast method of expanding powers of sums. If for example you are
faced with an expression such as (x+ y)6, you can write down the expansion without going
through the long process of multiplying out.

1.12. Example. (x + y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

The theorem enables you to calculate all the terms of this expansion in your head. To
describe it in detail we need more notation. For any positive integer n, factorial n, written
as n! denotes the product of all the integers from 1 up to n.

1.13. Example. 2! = 2, 3! = 6, 4! = 24, 5! = 120, and so on.

It is convenient also to have a meaning for 0!; we define 0! is to be 1. There is no real
mystery here. It just turns out to be a good idea; with this convention formulae can be
written in a more uniform way with fewer special cases.
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1.14. Theorem (The Binomial Theorem). For any positive integer n

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

where
(

n

k

)
is shorthand for

n!
k! (n− k)!

.

The quantities
(

n

k

)
are known as binomial coefficients. Here are some properties

which can help you calculate then:

• the binomial expansion is symmetrical, with
(

n

k

)
=
(

n

n− k

)
; in other words, the

coefficient of xn−kyk is the same as that of xkyn−k; this means the definition of the
binomial coefficients conceals some cancellations that always take place;

• the quickest way to calculate
(

n

k

)
is via the formula

(
n

k

)
=

the product of the first k integers counting down from n

k!

which holds whenever k is positive; when k = 0, the answer is 1 for all n;

• the expression
(

n

k

)
is the number of ways of choosing k objects from a pool of n,

and so it occurs a lot in books on Statistics, where it is often referred to as “n choose
k”; and

• the Binomial Theorem generalises to the situation where n is a number other than a
positive integer, but this is outside the scope of this course.

1.15. Example. Use the binomial theorem to expand (x + y)5.

Solution We first put n = 5 in the theorem and write out the summation in full.

(x + y)5 =
(

5
0

)
x5y0 +

(
5
1

)
x4y1 +

(
5
2

)
x3y2 +

(
5
3

)
x2y3 +

(
5
4

)
x1y4 +

(
5
5

)
x0y5.

We now start calculating the binomial coefficients(
5
0

)
= 1,

(
5
1

)
=

5
1!

= 5,
(

5
2

)
=

5.4
2.1

= 10.

This gets us halfway along the row. Symmetry then takes over. Therefore

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

1.16. Example. Go through the calculation for (x + y)6, checking your answer against the
one given in Example 1.12.

Solution I’m not always going to give solutions; if you are still having difficulty, you need
to ask.
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1.4.1 Pascal’s Triangle

This is an alternative way of working out binomial coefficients. It is quite efficient when n
is small, but not so good when it isn’t.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

Within the triangle each number is the sum of the two immediately above it. The n-th row
gives the binomial coefficients for (x + y)n. The drawback is that in order to get at a row
you have to calculate all its predecessors.

1.4.2 Using the Binomial Theorem

We now show how the theorem can help in situations which on first sight don’t seem to
be a good fit for the Theorem. This is characteristic of a good theorem; I hope you enjoy
seeing it being used.

There is an important point here about variable names. Even though you learn the
Binomial Theorem with variables called x and y, it is not restricted to being used just with
those variables. A more accurate statement of the theorem might start by saying “given
any two variables, which just for the rest of the statement we denote by x and y, we have
...”

1.17. Example. Expand
(

x +
1
x

)5

.

Solution Write down the expansion for (x + y)5 and then put y =
1
x

1.18. Example. Expand
(

x2 − 1
x

)6

.

Solution Write down the expansion for (a + b)6 and then put a = x2 and b = −1
x

1.19. Example. Expand (1 + x + x2)4.

Solution Think of this as (a + b)4 where a = 1 + x and b = x2. Expand, substitute, and
then use the Binomial Theorem again to deal with the powers of (1 + x).

1.20. Example. What is the coefficient of x5 in
(

x2 +
2
x

)10

?

Solution This time it is not necessary to write down the full expansion. The general term

in the expansion of (a + b)10 is
(

10
k

)
a10−kbk. Replacing a by x2 and b by

2
x

turns this into(
10
k

)
x20−2k2kx−k, i.e. into 2k

(
10
k

)
x20−3k.
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Now work out which k you want. We have 20 − 3k = 5 when k = 5. So the required
coefficient is the one with k = 5. So the required coefficient is

25

(
10
5

)
= 32.

10.9.8.7.6
5.4.3.2.1

= 32.9.4.7 = 8064

1.5 Cartesian Coordinates

There are many ways of describing the position of a point in the plane, and hence of passing
from geometry — the picture — to algebra. The advantage of doing this is that we have
the whole apparatus of algebra to enable us then to make deductions about the positions
of the points. The most common way of referring to the position of points in a plane is
to use Cartesian Coordinates which we describe now. There are lots of other coordinate
systems in use as well, particularly in specialised applications; in particular we discuss Polar
Co-ordinates in section 1.9

We choose an origin O and two perpendicular axes OX
and OY. Then any point P is assigned coordinates (x, y)
where x and y are the (signed) distances AP and BP.

1.5.1 Distance between points

By Pythagoras’ theorem the distance between the two
points P (x1, y1) and Q(x2, y2) is given by

d =
√

(x2 − x1)2 + (y2 − y1)2 (1.1)

For example, the distance between the points (1, 2) and
(5, 7) is

√
(5− 1)2 + (7− 2)2 =

√
42 + 52 =

√
41. The distance between the points (−2,−5)

and (−3, 7) is √
(−3− (−2))2 + (7− (−5))2 =

√
(−1)2 + 122 =

√
145

1.5.2 Straight Lines

An important concept for a straight line in the (x, y)-plane is its slope.

Figure 1.1: The slope of a line.

The slope, or gradient, of a straight line is
the tan of the angle that the line makes with
the positive direction of the x-axis

This makes sense for any line other than
those lines that are perpendicular to the x-axis.
We do not give a slope for those lines.

Two lines with the same slope are parallel.
The condition for two lines of slopes m1 and
m2 to be perpendicular is that

m1m2 = −1 (1.2)
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The slope of the line joining P (x1, y1) to Q(x2, y2) is

m =
y2 − y1

x2 − x1

The Cartesian equation of a straight line having slope m is of the form

y = mx + c (1.3)

The constant c tells us where the line meets the y-axis.
This equation can be re-written in a couple of other useful forms.
The equation of the straight line through the point (a, b) with slope m is

y − b = m(x − a) (1.4)

This is clear. The coefficient of x is m, so the line has slope m. When x = a the RHS is
zero, so y = b. Therefore the line goes through (a, b).

The equation of the straight line through (x1, y1) and (x2, y2), if x1 6= x2, is

y − y1 =
y1 − y2

x1 − x2
(x − x1) (1.5)

All the forms so far have had the slight disadvantage that, since they are written in
terms of the gradient, they do not apply to the case (x = constant) of a line perpendicular
to the x-axis.

This is corrected as follows. The fully general equation of a straight line is

ax + by + c = 0 (1.6)

where a and b are not both zero.
If b 6= 0 then we can re-arrange the equation as y = −a

bx − c
b which is of the form

y = mx + c as before. If, on the other hand, b = 0 then the equation becomes

x = − c

a
= constant

which covers the case of lines perpendicular to the x-axis.
1.21. Example. What is the equation of the straight line through (1, 2) with slope −1?
Solution Using the above formula the equation is y−2 = −1(x−1) or, tidying up, y = 3−x.

1.22. Example. What is the equation of the straight line through (4, 5) which is perpen-
dicular to the line y = 2x− 3?
Solution The second line has slope 2. So, by the formula m1m2 = −1 the required slope
of our line is −1/2. So the equation of the line is

y − 5 = −1
2(x− 4) or x + 2y = 14

1.23. Example. What is the equation of the straight line through the two points (1, 3) and
(−3, 8)?
Solution We can do this by the earlier formula, but it is probably easier to do it in two
stages. First, the slope of the line must be

m =
8− 3
−3− 1

= −5
4

So the equation is
y − 3 = −5

4(x− 1) or 5x + 4y = 17



8 CHAPTER 1. REVISION

1.5.3 Finding the intersection of two lines

Suppose two lines intersect at the point (x, y). Then this point must lie on both lines, so
x and y must satisfy both equations. So we are need to treat the equations of thetwo lines
as a pair of simultaneous equations

1.24. Example. Find the point of intersection of the line which passes through (1, 1) and
(5,−1) and the line which passes through (2, 1) and (3,−3).

Solution Line one has equation y − 1 =
(−1− 1

5− 1

)
(x− 1) i.e. 2y + x = 3. Line two has

equation y − 1 =
(−3− 1

3− 2

)
(x− 2) i.e. y + 4x = 9. Solving these two equations simultan-

eously gives us the point (
15
7

,
3
7
).

1.25. Example. Where do the two lines y = 3x− 2 and y = 5x + 7 meet?

Solution The point (x, y) where they meet must lie on both lines, so x and y must satisfy
both equations. So we are looking to solve the two simultaneous equations

y = 3x− 2 and y = 5x + 7

Well, in that case, 3x− 2 = 5x + 7, so 2x = −9 and x = −9/2. Putting this back in one of
the equations we get y = −27/2 − 2 = −31/2.

Here are some examples of working with lines to practice with.

1.26. Example. What is the equation of the straight line passing through the point (−3, 5)
and having slope 2?

1.27. Example. What is the equation of the line passing through the points (−4, 2) and
(3, 8)? What are the equations of the lines through (5, 5) parallel and perpendicular to this
line?

1.28. Example. Where do the lines y = 4x− 2 and y = 1− 3x meet? Where does the line
y = 5x− 6 meet the graph y = x2?

1.29. Example. Let l1 be the line of slope 1 through (1, 0) and l2 the line of slope 2 through
(2, 0). Where do they meet and what is the area of the triangle formed by l1, l2 and the
x-axis?

1.6 Angles and Trigonometry

Mathematicians normally measure angles in two ways, or systems: degrees and radians.
Degrees are easy and familiar. There are 360 degrees in a single rotation. A right angle is
therefore 90◦. Radians are less familiar, but you must get used to them because most of
mathematical theory involving angles is expressed in terms of radians.

The definition of a radian is that it is the angle subtended at the centre of a circle by a
piece of the circumference of the circle of length equal to the radius of the circle.

This means that, since the circumference of a circle of radius r is 2πr, a single rotation
is 2π radians.
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Outside mathematics the use of degrees is universal, because the numbers are nicer.
Degrees are also the older system, being in use by Greek mathematicians in the second cen-
tury BC, with throwbacks from there to the Babylonian astronomers and mathematicians
with their base 60 number system. Radians, along with the trigonometric functions such
as sine, were introduced by Indian mathematicians in the sixth century AD. The numbers
involved are more awkward, but the system gives a neater relationship between angle and
arc length on the circle, and this makes for tidier formulas elsewhere. This is especially
true of calculus formulas; calculus using degrees is a mess, and so in this context radians
are preferred by everyone.

When you are doing calculus you always use radians. A lot of the formulas for standard
derivatives and integrals are false if you don’t.
Warning: Most calculators wake up in degree mode. You must switch to radians before
doing any calculation for this course which involves a trig function. If you don’t, you will
get wrong answers, because the formulas you are using are built on radian measurement.

We have the following obvious conversions:

360◦ = 2π radians 180◦ = π radians 90◦ = 1
2π radians

45◦ =
1
4
π radians 60◦ =

1
3
π radians 30◦ =

1
6
π radians

Angles are traditionally measured anticlockwise. An angle measured in the clockwise dir-
ection is taken to be negative (thinking of it as a ‘turn’ rather than a ‘separation’).

1.6.1 Trig Functions

AB

C

θ

You will have met sine, cosine and tan. They are
usually introduced in the context of a right-angled
triangle, as shown.

sin θ =
CA
CB

, cos θ =
AB
CB

, tan θ =
CA
AB

We also sometimes use other combinations of these
functions:

cosec θ =
1

sin θ
, sec θ =

1
cos θ

, cot θ =
1

tan θ

The weakness of the triangle definition of the trig functions is that it only makes sense
for positive angles up to 90◦. We want a much more general definition than that, because
we want to be able to take trig functions of almost any angle.

A better definition goes as follows. Draw the
circle

x2 + y2 = 1

of radius 1 with centre at the origin. Let OX be the
radius along the positive x-axis.

Let θ be any angle (positive or negative). Turn
OX through angle θ so that it ends up at OP. Then
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cos θ is the x-coordinate of P and sin θ is the y-
coordinate of P. i.e.

P = (cos θ, sin θ)

This now gives us a definition that works for all possible angles. We still define tan θ as
sin(θ)/ cos(θ).

We can draw some immediate and important conclusions from this picture.

• Rotating OP through a full rotation (in either direction) brings us back to where we
started. So the trig functions are periodic with period 2π:

cos(x + 2π) = cos(x) sin(x + 2π) = sin(x)

• Rotating through half a rotation takes us from (x, y) to the opposite point (−x,−y).
So

sin(x + π) = − sin(x) cos(x + π) = − cos(x)

• Rotating through 90◦ has a more complicated effect. If you think about it you will
see that the effect is to send (x, y) to (−y, x). So

cos(x + 1
2π) = − sin(x) sin(x + 1

2π) = cos(x)

• Rotating through a negative angle is like rotating through the corresponding positive
angle and then reflecting in the x-axis. i.e. if a turn of OX through negative angle θ
gets us to (x, y) then a turn through the corresponding positive angle will take us to
(x,−y). So

sin(−x) = − sin(x) cos(−x) = cos(x)

It is also worth knowing that

sin(π/2− x) = cos(x) cos(π/2− x) = sin(x)

Because the point P lies on the circle we have the very important relationship

sin2(θ) + cos2(θ) = 1 (1.7)

and from this we get
1 + tan2(θ) = sec2(θ)

The graphs of the three basic trig functions, sin, cos and tan, look like this:

x

0 6420-2-4-6

y

0

1

0.5

0

-0.5

-1

.

x

0 6420-2-4-6

y

0

1

0.5

0

-0.5

-1

.

x

0 6420-2-4-6

y

0

2

1

0

-1

-2

.

y = sin x y = cos x y = tan x
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The values of the trig functions for some special angles are worth knowing. They are
given in Table 1.1.

Deg Rad cos sin tan
0 0 1 0 0

180 π -1 0 0
90 π/2 0 1 -
45 π/4 1/

√
2 1/

√
2 1

60 π/3 1/2
√

3/2
√

3
30 π/6

√
3/2 1/2 1/

√
3

Table 1.1: Trigonometric function at some special angles.

There are important addition formulas for the trig functions:

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) (1.8)
sin(a− b) = sin(a) cos(b)− cos(a) sin(b) (1.9)
cos(a + b) = cos(a) cos(b)− sin(a) sin(b) (1.10)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b) (1.11)

and from these we get the special cases

sin(2a) = 2 sin(a) cos(a) (1.12)

cos(2a) = cos2(a)− sin2(a) (1.13)

= 2 cos2(a)− 1 (1.14)

= 1− 2 sin2(a) (1.15)

Here are some examples of working with trigonometric formulae to practice with.

1.30. Example. Starting from the trig formulas (1.8–1.11) show that

sin 2x = 2 sin x cos x, cos 2x = 2cos2 x− 1 = 1− 2 sin2 x,

sin2 x =
1
2
(1− cos 2x), cos2 x =

1
2
(1 + cos 2x),

1.31. Example. Do these in the same way.

tan(x + y) =
sin(x + y)
cos(x + y)

=
tan x + tan y

1− tan x tan y
, tan 2x =

2 tan x

1− tan2 x

1 + tan2 x = sec2 x, 1 + cot2 x = cosec2 x.

1.32. Example. Use the fact that you know the values of the trig functions at π and π/2
to show that

sin(π − x) = sin x, cos(π − x) = − cos(x), sin(π/2 − x) = cos(x),

sin(x + 2π) = sin x, cos(x + 2π) = cos x
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1.7 Circles

The circle with centre P and radius r is the set of points in a plane that are at distance r
from P. By our formula for the distance between two points, we can say that the distance
between (x, y) and (a, b) is r precisely if

(x − a)2 + (y − b)2 = r2

This is therefore the equation of a circle of radius r having centre (a, b).
We get a simple special case if the centre happens to be at the origin. Then the equation

becomes
x2 + y2 = r2

Our definition of the trigonometric functions really boils down to the statement that any
point on this circle can be expressed in the form

x(θ) = a + r cos θ y(θ) = b + r sin θ

The most general form for the equation of a circle is

x2 + y2 + 2ax + 2by + c = 0

Why is this a circle and, if it is, what are its centre and radius?
This is an exercise in ‘completing the square’.
Write x2 +2ax as (x+a)2−a2 and y2 +2by as (y+b)2−b2. Then our equation becomes

(x + a)2 + (y + b)2 = a2 + b2 − c

This is a circle with centre at (−a,−b), provided that the RHS of the equation is positive.
In that case, the radius is r =

√
a2 + b2 − c.

1.7.1 Tangents

The tangent line to a circle, with centre O, at a point P is the straight line through P that
touches the circle. By the geometry of the circle this line is perpendicular to the radius
OP. So we can write down the equation of the tangent: we know it goes through P and we
know its slope from the formula m1m2 = −1.

Here are some examples of working with circles to practice with.

1.33. Example. What is the equation of the circle with centre (1, 2) and radius 3? Find
the two points where this circle meets the x-axis and the two points where this circle meets
the y-axis. What is the area of the quadrilateral formed by these four points?

1.34. Example. What are the centre and the radius of the circle with equation

x2 + y2 − 2x + 4y = 4 ?

1.35. Example. Simplify the following expressions: x2/3x−3/2, (x−1√y)3/2. Expand out the
following brackets and simplify the results: x1/3(x2/3 + y1/3), (x1/2 + x−1/2)(x1/2 − x−1/2).
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1.8 Parameters

With other curves you sometimes work with an equation and sometimes with parameters.
Curves are sometimes best thought of as paths traced out by a moving point. When

you do this the most convenient way of specifying the path is to give the x-coordinate and
the y-coordinate of the point “at time t”. So you end up with both x and y as functions of
a parameter, which you can think of as time.

1.36. Example. The path traced out by a point on the circumference of a wheel that is
rolling along in a straight line is given (with respect to suitable coordinates) by

x = a(t− sin t) , y = a(1 − cos t)

where t is the parameter and a is the radius of the wheel.

1.37. Example. The circle centre (a, b) and radius r can be described parametrically by

x = a + r cos θ , y = b + r sin θ

This time θ is the parameter.

This is often the simplest way to deal with complicated curves, and is clearly the ap-
proach to adopt if you are plotting a curve using a computer.

1.9 Polar Co-ordinates

O

Py

x

(x, y)

θ

Figure 1.2: Polar co-ordinates (r, θ)
of a point.

We have always used Cartesian Coordinates to de-
scribe points in a plane. There are lots of other co-
ordinate systems in use as well, particularly in spe-
cialised applications. One well-known coordinate sys-
tem is that known as Polar Coordinates. It is espe-
cially useful in situations where information is most
conveniently expressed in terms of distance from the
origin.

Let OX and OY be Cartesian axes in the plane.
Let P be a point in the plane, other than the origin.

The Polar Coordinates of P are (r, θ) where
r = OP > 0 and θ is the angle from OX round to OP
anticlockwise.

By convention, we take the angle range to be
−π < θ ≤ π. (some people take 0 ≤ θ < 2π).

Note that we do not give polar coordinates for the origin, because the angle does not
make sense there.

Now consider the problem of converting between Cartesian and polar coordinates. One
way round is easy:

x = r cos θ y = r sin θ

(these are really just the definitions of sin θ and cos θ.)
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The other way round is more tricky and needs some understanding of inverse trig func-
tions. First of all, without any difficulty,

r =
√

x2 + y2

The real problem is to get θ in terms of x and y. Dividing the above equations gives

tan θ =
y

x

So we are tempted to write
θ = arctan(

y

x
)

This is wrong.
First of all, we have to be careful about the case x = 0 (which corresponds to the y-axis)

because we don’t want to divide by zero.
Inspection of Figure 1.2 tells us that

if x = 0 then
if y > 0 then θ = π/2
if y < 0 then θ = −π/2

Our problems don’t end there. Recall that arctan is defined as taking values in the
range

−π

2
< θ <

π

2
So it is not good enough in itself to solve our problem. The obvious trouble is that, for
example, (1, 1) and (−1,−1) give the same value for y/x even though they have different
angles (π/4 and −3π/4). We have to take account of the quadrant in which the point lies.

The correct conversion rules are these—which you should check through as an exercise.

if x > 0 then θ = arctan(y/x)
if x < 0 then

if y ≥ 0 then θ = arctan(y/x) + π
if y < 0 then θ = arctan(y/x)− π



Chapter 2

The Derivative

2.1 Introduction

One of the oldest problems in mathematics, going back at least as far as the ancient Egyp-
tians, is that of determining area: tax gatherers needed to know how much land people had
so that they could tax them on it. So when, in the 17th century, mathematicians came
up with the idea of coordinate geometry, and with it the idea of a curve represented by an
equation y = f(x), one of the questions that obsessed them was “How do you find the area
under the curve y = f(x)?”.

A less obviously useful but still interesting problem is “Given a curve y = f(x) and a
point (x0, y0) on the curve, what is the equation of the tangent?”.

What the inventors of calculus discovered was

• a method for solving the tangent problem.

• that the tangent problem was the key to the area problem.

• that their technique for solving the tangent problem enabled them to deal with prob-
lems concerning changing situations — movement etc.

Previously mathematicians had handled static problems; now they could tackle dynamic
ones. And of course it is this that has made calculus so important in applications of
mathematics, not least in engineering.

2.2 The Derivative

The tangent problem is the easiest place to start. For the equation of a line you need to
know either two points or one point and the slope. Here we have one point, and so somehow
we have to calculate the slope.

We have a curve y = f(x) and a point P = (x0, y0) on it. To get the equation of the
tangent at P we need to calculate the slope.

For example, let Q be a point on the curve close to P . Then the slope of the tangent is
close to that of the chord PQ. Moreover, the closer Q gets to P the better the approximation
will be. So write down the slope of PQ, and then see what happens when Q is pushed
towards P .

15
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P has x-coordinate x0 and y-coordinate y0 = f(x0). Q is close to P and so will have
x-coordinate x0 + h, where h is some small quantity. The smaller h is the closer Q will be
to P .

The y-coordinate of Q is f(x0 + h).
It follows that the slope of PQ is

f(x0 + h)− f(x0)
h

The hope is that we will be able to tell what happens to this quotient as h gets smaller
and smaller.

The only way to see if this will work is to try an example.

2.1. Example. Consider the curve y = x2.

f(x0 + h)− f(x0)
h

=
(x0 + h)2 − (x0)2

h
,

=
2x0h + h2

h
,

= 2x0 + h.

It is working. We can see what is going to happen as h gets smaller and smaller.

It is clear that, as h shrinks, the slope of the chord will approach a limiting value of 2x0.
So the slope of the tangent at P (x0, x

2
0) is 2x0. Consequently the equation of the tangent

is y − x2
0 = 2x0(x− x0), which simplifies to y = 2x0x− x2

0.

2.2. Definition.
f(x0 + h)− f(x0)

h
is called the Newton quotient of f at x0.

2.3. Definition. The limiting value of the Newton quotient as h shrinks to zero is denoted

by lim
h→0

(
f(x0 + h)− f(x0)

h

)
and is called the derivative of f at x0.

Notation The derivative of f at x0 is denoted by
df

dx
(x0) and also by f ′(x0).

Calculating the limiting values of Newton quotients is not usually as easy as in the
example above. We will go through one important derivative using it but quote others
without proof.

Geometrical Observation
When the derivative is positive the slope of the tangent is positive, and the function is

increasing.
When the derivative is negative the slope of the tangent is negative, and the function

is decreasing.
When the derivative is zero the tangent is parallel to the x-axis.

It is often useful to know whether a function is increasing or decreasing. The derivative
gives you a means of finding out.
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2.3 The Derivative as a Rate of Change

Suppose we were to plot distance covered against time elapsed for some journey, getting a
curve

The curve is x = f(t) for some function f . Let P be the point on the curve corresponding
to the time t = t0, and let Q be that corresponding to t = t0 + h.

To work out the average speed for the section of the journey between the points repres-
ented by P and Q we take the distance covered and divide it by the time taken. The time
elapsed is (t0 + h)− t0 = h, and the distance covered is f(t0 + h)− f(t0).

I am assuming that the journey is as shown, with no backtracking.
Therefore, the average velocity is

f(t0 + h)− f(t0)
h

And, of course, this is just the Newton quotient.
What about the velocity at time t0?
There is only one sensible answer

lim
h→0

(
f(t0 + h)− f(t0)

h

)

The instantaneous velocity is the limiting value of the average velocity measured over a
very small interval.

So the derivative at P gives the velocity at time t0.
This works more generally. If you plot one quantity against another, the derivative

picks up the instantaneous rate at which one is changing relative to the other.

2.4 Three Standard Derivatives

The Newton quotient and calculations concerning its limiting values as h gets small provide
the foundation on which calculus is built. However, it is not the way derivatives are usually
calculated in practice. What we do instead is build up some theory that will enable us to
come in at a later stage of the process. It works as follows:

The most efficient way to calculate derivatives is

• to build up a library of the derivatives of commonly occurring functions.

• to develop a set of rules which enable you to build up the derivatives of more com-
plicated functions by using the standard list as a kit.

2.4.1 The derivative of xn

2.4. Example. Let f(x) = x4. Then we have
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f(x + h)− f(x)
h

=
(x + h)4 − x4

h

=
(x4 + 4x3h + 6x2h2 + 4xh3 + h4)− x4

h

=
4x3h + 6x2h2 + 4xh3 + h4

h
= 4x3 + h(6x2 + 4xh + h2)

As h get small, h(6x2 + 4xh + h2) shrinks to nothing, and so the derivative is 4x3.
This argument works for any positive integer n. You use the Binomial Theorem to

expand (x + h)n, the h from the bottom line will then cancel into the top, leaving you
with an expression of the form nxn−1 + h(something). The h(something) then becomes
negligible as h shrinks to nothing, leaving nxn−1 as the derivative. So we have

d

dx
(xn) = nxn−1

The Binomial Theorem argument only establishes this for n a positive integer n. However,
the formula does in fact work for all powers – positive, negative and fractional.
2.5. Example. The formula can be used to get the derivative of

√
x.

d

dx

(√
x
)

=
d

dx

(
x

1
2

)
=

1
2
x

1
2
−1

=
1
2
x−

1
2

=
1

2
√

x

2.6. Example. Likewise for inverse powers.

d

dx

(
1
x2

)
=

d

dx

(
x−2

)
= (−2)x−2−1

= −2x−3

= − 2
x3

2.4.2 The derivatives of sine and cosine

These are quite tricky. You need to use some of the trig formulas and then to do some
delicate arguments with areas of segments of circles. We will quote the results without
proof.

Provided x is measured in radians
d

dx
(sin x) = cos x

d

dx
(cos x) = − sinx
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2.5 Rules for Differentiation

These are the means by which you work out the derivatives of functions which have been
built up from the basic ones by adding, multiplying, and so on. There are four of them, and
they are used so often that you should learn them and not just rely on your handbooks.

2.5.1 SUMS

Let f and g be functions of x, and suppose that the derivatives of both exist. Then

d

dx
(f + g) =

df

dx
+

dg

dx

Equivalently, using the dash notation,

(f + g)′ = f ′ + g′

This is the sum rule

2.7. Example. The derivative of x3 + sin x is 3x2 + cos x.
Here f(x) = x3, which has derivative 3x2, and g(x) = sinx, which has derivative cos x.

The rule extends in an obvious way to the sums of more than two functions. For
example, the derivative of x3 + sin x + cos x is 3x2 + cos x− sin x.

2.5.2 PRODUCTS

Let f and g be functions of x, and suppose that the derivatives of both exist. Then

d

dx
(fg) =

df

dx
g + f

dg

dx

Equivalently, using the dash notation,

(fg)′ = f ′g + fg′

This is the product rule.

2.8. Example. The derivative of x3 sin x is 3x2 sin x + x3 cos x.
Here f(x) = x3, which has derivative 3x2, and g(x) = sinx, which has derivative cos x.

So f ′g is 3x2 sin x, while fg′ is x3 cos x.

2.9. Remark. The product rule tells us how to deal with functions such as cg(x), where c
is a constant.

Think of them as a product fg, where f is the constant function f(x) = c for all x.
The graph of y = f(x) is a horizontal straight line, and so has slope zero. So f ′ is zero.
Consequently the expression f ′g + fg′ collapses down to fg′, i.e. to cg′. So we have

d

dx
(cg) = c

dg

dx
if c is a constant

2.10. Example. The derivative of 2 sin x is 2 cos x. The derivative of 2x4 is 8x3.

2.11. Remark. If you have a product of more than two functions to deal with, you take it
in stages.
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2.12. Example. Find the derivative of x3 sin x cos x.
Think of the function as the product of f(x) = x3 and g(x) = sin x cos x, and apply the

product rule to get

d

dx

(
x3 sin x cos x

)
= 3x2(sin x cos x) + x3 d

dx
(sin x cos x)

Now use the product rule again, this time to get the derivative of sin x cos x.

d

dx
(sin x cos x) = cos x cos x + sin x(− sin x)

= cos2 x− sin2 x

Substituting this into the earlier expression gives

d

dx

(
x3 sinx cos x

)
= 3x2(sin x cos x) + x3(cos2 x− sin2 x)

It is not difficult; you just have to take it in steady stages.

2.5.3 QUOTIENTS

Let f and g be functions of x, suppose that the derivatives of both exist and that g′(x) 6= 0.
Then

d

dx

(
f

g

)
=

df
dx g − f dg

dx

g2

Equivalently, using the dash notation,(
f

g

)′
=

f ′g − fg′

g2

This is the quotient rule.

Again, this is something that you should commit to memory. Note that the minus sign
on the top row goes with the derivative of the function from the bottom line — i.e. with
the derivative of the function that occurs to the power minus one.

Using the quotient rule we can expand our list of standard derivatives by getting the
derivatives of the other trig functions.

2.13. Example. Find the derivative of tan x.

tan x =
sinx

cos x

Therefore

d

dx
(tan x) =

(sin x)′ cosx− sin x(cos x)′

(cos x)2

=
cos2 x + sin2 x

cos2 x
= sec2 x
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The derivatives of cot x, sec x and cosec x can be calculated in similar fashion. The
result is the following table:

d

dx
(tan x) = sec2 x

d

dx
(cot x) = − cosec2 x

d

dx
(sec x) = sec x tan x

d

dx
(cosec x) = − cosec x cot x

2.5.4 THE CHAIN RULE

If you think of a functions as a machine which has numbers as both input and output, then
the chain rule is designed to cope with those machines that are made up of a “chain” of
simpler machines each of which takes as input the output of its predecessor in the chain.

The following examples are situations covered by this rule.

2.14. Example. f(x) = sin(x3)

2.15. Example. f(x) =
√

1 + sin x

In both of these you have a succession of functions, with the final answer being got by
applying them one after the other. So with the first one you take the given number, you
cube it and then you apply the sine function. The chain rule tells you how to differentiate
such composite functions.

The Chain Rule: Version 1
If f(x) = g(h(x)) and g, h are functions that can be differentiated, then

f ′(x) = g′(h(x)).h′(x)

With the first of the examples above, h(x) = x3 and g is the function sine. Since g is sine,
g′ is cosine. We also have that h′(x) = 3x2. So f ′(x) = cos(x3).3x2.

With the second example, h(x) = 1 + sin x and g is the function “square root”. So

f ′(x) =
1
2
(1 + sin x)−

1
2 . cos x =

cos x

2
√

1 + sin x

This is the traditional, Newtonian, way of describing the rule. However, I think that
the alternative formulation, due to Leibniz, is both easier to remember and easier to use.

The Chain Rule: Version 2

This uses the
dy

dx
notation, and introduces a subsidiary variable z.

If y = g(z) where z = h(x), then

dy

dx
=

dy

dz
.
dz

dx

To remember the rule you just think of dy, dz and dx as being small quantities in their
own right and then visualise the “cancellation” of the dz.

2.16. Example. y =
1√
sin x

.
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Think of y as
1√
z

= z−
1
2 where z = sin x. Then

dy

dx
=

dy

dz
.
dz

dx

= −1
2
z−

3
2 . cos x

= −1
2
(sin x)−

3
2 . cos x

= − cos x

2(sin x)
3
2

2.17. Example. y = (x2 + tan x)8

Think of y as z8 where z = x2 + tan x. Then

dy

dx
=

dy

dz
.
dz

dx
= 8z7.(2x + sec2 x)

= 8(x2 + tan x)7(2x + sec2 x)

The Leibniz version also makes it easy to deal with longer chains.
If y = g(u) where u = h(v) and v = k(x), then

dy

dx
=

dy

du
.
du

dv
.
dv

dx

This time you can imagine both the du and the dv being cancelled.
2.18. Example. y = sin(sin(1 + x2))

Break this down as

y = sin u

where

u = sin v

and

v = 1 + x2

Then
dy

dx
=

dy

du
.
du

dv
.
dv

dx
= cos u. cos v.2x

= cos(sin v). cos(1 + x2).2x

= cos(sin(1 + x2)). cos(1 + x2).2x

With complicated functions you often have to use several of the four rules in combina-
tion.

2.19. Example. Differentiate
x2 cos

(
x

3
2

)
tan x

.



Chapter 3

Rates of Change etc.

3.1 Introduction

Now we consider a certain function f of a certain variable t (usually time) and ask how f
changes as t changes. Consider the following examples.

3.1. Example. A stone is thrown vertically upwards into the air so that its height in metres
is given by h(t) = 5 + 20t− 5t2, where t is the time elapsed since launch (t is in seconds).

(1) How fast is the stone travelling when t = 1 and when t = 3?

(2) How high does it get?

(3) What is its average speed between t = 1 and t = 3?

Note that the sign of h′ picks out the direction of travel. If h′ is positive, h is increasing,
and so the stone is travelling upwards. If h′ is negative, the stone is travelling downwards.

In that example we were dealing with a situation that we could picture in our heads
and the expression that we were interested in — the height — was given to us explicitly in
terms of the other key variable — time. Normally things aren’t quite so simple.

3.2. Example. A ball is thrown so that its position t seconds after launch is given by
x = 32t, y = 32t− 16t2. (This time x and y are in feet and air resistance is being ignored.)

(1) How far is the ball from the start at the top of its flight?

(2) At what rate is the distance between the ball and its position of launch increasing when
the ball is at the top of its flight?

Solution This time the situation is more complicated, and so we need a picture.
The axes have been chosen so that the ball begins its journey at the point (0, 0).
The picture shows the position at some unspecified time t. This is important, because

we want to be quite clear in our minds about which quantities are varying and which are
fixed.

Let s be the distance of the ball from its launch point.
The next stage is to decide just what it is that we need to calculate.

(1) How do we recognise when the ball is at the top of its flight?
The ball is at the top of its flight when it has stopped going up but has not yet started

to come down. So y′ has stopped being positive, but has not yet gone negative. That being
so, we can see that this is the point when y′ = 0.

23
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So that is the strategy: calculate y′, find the value of t for which it is 0, and then
calculate s for this value of t. There is a general point to note here: if you are tackling a
problem, inside mathematics or out of it, it helps if you first think about strategy.

y′ = 32− 32t, which is 0 when t = 1.
When t = 1, x = 32 and y = 16. So

s2 = x2 + y2 = 322 + 162 = 162(22 + 1) = 162.5

Therefore s = 16
√

5.

(2) For this we need to calculate s′ when t = 1. The procedure is to get s in terms of t, to
differentiate and then to put t = 1.

Note that putting in the particular value of t comes last in the process. It is no use
fixing t and then trying to differentiate.

s2 = x2 + y2

= (32t)2 + (32t− 16t2)2

= 1024t2 + 1024t2 − 1024t3 + 256t4

= 2048t2 − 1024t3 + 256t4

= 256(8t2 − 4t3 + t4) (1)

There are now two ways to proceed.

Method 1: This is the obvious one. Take square roots to get s as a function of t, differ-
entiate and then put t = 1.

Method 2: This removes the mess from the differentiation process.
Go back to equation (1) and differentiate both sides.
The two sides were equal at the start, we have done the same thing to both, and so

they must still be equal.
This gives

2ss′ = 256(16t − 12t2 + 4t3)

We know that s = 16
√

5 when t = 1. So all we have to do is put in these values for s and
t and we have the required value for s′.

Now we draw up a general plan for these problems.

General Plan:

• Draw a picture of the situation at general time t.

• Get clear in your mind what you are trying to find and just what it is you have been
given in the way of information.

• Express the quantity you are interested in in terms of a single variable. This may
involve you in doing some geometry to get rid of surplus variables. Then differentiate.
Then put in the values that relate to the special situation that you are interested in.

3.3. Example. Water is being poured into a cone at the rate of 5cc/sec. The cone is 10cm
deep, and the angle between the side of the cone and the vertical is thirty degrees (π/6
radians). How fast is the level rising when the depth of water in the cone is 5cm?



3.1. INTRODUCTION 25

Solution First draw the picture at general time t. Having done this, give names to all the
variable quantities that look likely to be of relevance.

Get clear in your mind what you are trying to find and what you have been given. In

this case we want
dh

dt
and have been given information about

dV

dt
. So a sensible strategy is

to look for the connection between h and V . The handbook tells us that V =
1
3
πr2h.

This formula contains three variables, which is one too many for our purposes. So look
for a way of getting rid of one of them, and it is clearly r that we would like to see go. The
geometry enables us to express r in terms of h. The result is

V =
1
9
πh3

This doesn’t give h as a function of t, as written it doesn’t even give h as an explicit function
of V , but none of this matters. If we differentiate both sides of the equation with respect

to t,
dh

dt
will appear, and that is likely to be good enough.

Differentiating both sides with respect to t gives

dV

dt
=

1
3
πh2 dh

dt

We know V ′, we know the value of h that interests us, and so if we plug in these values, we
can get the required value of h′.

3.4. Remark. The differentiation technique that we used here, and also in method two in
the previous example is known as implicit differentiation. The definition of the derivative

works with explicitly defined functions. So to find
dh

dt
you begin with h as a function of

t. However, as our two examples show, the way the chain rule operates means that you
don’t have to have things in this form. If you have an equation involving h, this defines h
implicitly, and this is enough. Differentiate through the equation and h′ will appear.

Here is another example

3.5. Example. An observer stands 100 metres from the launch pad of a rocket, which then
blasts off so that its height at time t is given by h = 25t2. How quickly is the angle of
elevation observer to rocket) increasing two seconds after launch?

Solution The picture produces the formula h = 100 tan θ. We want
dθ

dt
.

With our existing repertoire of functions, we can’t even get θ as an explicit function
of t, but if we just differentiate straight through the formula (implicit differentiation), we
shall get the answer we are looking for.

100 tan θ = 25t2

Therefore

4 tan θ = t2
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Differentiating

4 sec2 θ
dθ

dt
= 2t

Now calculate tan θ and hence sec2 θ for the required value of t, substitute, and you have
the answer.

3.2 Higher Derivatives

Differentiation is something you do to functions. The result of differentiating a function is
another function. That being so, we can differentiate this other function, thereby getting
the derivative of the derivative. These secondary and later derivatives are called higher
derivatives of the original function.

Let f be a function of x.

The derivative of f is denoted by f ′ (Newton) or
df

dx
(Leibniz).

Differentiating the derivative gives us (f ′)′ (Newton) or
d

dx

(
df

dx

)
(Leibniz), which

notations are shortened to f ′′ and
d2f

dx2
respectively.

These derivatives of the derivative are called the second derivative of f .
You can then differentiate the second derivative to get the third derivative, and so

on.

Notation: The n-th derivative of f is denoted by f (n) (Newton) and by
dnf

dxn
(Leibniz). In

the Newtonian version Roman letters are sometimes used in place of (n) for the first few:
so we have f ′′, f ′′′, f iv, f v, etc.

3.6. Example. Calculate the first five derivatives of f(x) = x3 + x + sin x.

f ′(x) = 3x2 + 1 + cos x

f ′′(x) = 6x− sinx

f (3) = 6− cos x

f (4) = sin x

f (5) = cos x

So there is nothing mysterious. You know how to differentiate, and what you can do
once you can do repeatedly.

3.2.1 The meaning of the second derivative

The most common every day use is in the notion of acceleration.

acceleration = rate of change of velocity with time =
dv

dt

velocity = rate of change of distance with time =
dx

dt
Substituting
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acceleration =
d

dt

(
dx

dt

)
=

d2x

dt2

So acceleration is the second derivative of distance with respect to time.
3.7. Example. The thrown ball: Here we had x = 32t, y = 32t− 16t2.

d2x

dt2
= 0 ;

d2y

dt2
= −32

What this tells us that is that there is no horizontal acceleration (x′′ = 0), and that the
vertical acceleration is a constant −32 ft/sec2.

This latter is one of Newton’s laws of motion.

3.8. Example. The rocket problem: Here we had h = 25t2. Again the acceleration is
constant, but this time it is positive as a result of the thrust from the engine.

The technique of implicit differentiation can be used to find higher derivatives.
3.9. Example. A curve is given by the equation

16x2 = (x− 1)2(x2 + y2)

Find
dy

dx
and

d2y

dx2
at the point (3, 3

√
3).

Check the point is on the curve!
Differentiate straight through the equation with respect to x

32x = 2(x− 1)(x2 + y2) + (x− 1)2
(

2x + 2y
dy

dx

)
(*)

That was a combination of the product rule and the chain rule.
Put in the values x = 3, y = 3

√
3.

32.3 = 2.2.36 + 4
(

6 + 6
√

3
dy

dx

)

Therefore
96 = 144 + 24 + 24

√
3
dy

dx
Therefore

−72 = 24
√

3
dy

dx
To get the second derivative just go back to equation (∗) and differentiate straight through
once again. The result will be an equation involving x, y, y′ and y′′. Plugging the given
and calculated values in to this will give y′′.

First cancel the 2 which appears throughout (∗).

16x = (x− 1)(x2 + y2) + (x− 1)2
(

x + y
dy

dx

)
(*)

Then differentiate both sides of the equation to get

16 = (x2+y2)+(x−1)
(

2x + 2y
dy

dx

)
+2(x−1)

(
x + y

dy

dx

)
+(x−1)2

(
1 +

(
dy

dx

)2

+ y
d2y

dx2

)

Into this you can now put x = 3, y = 3
√

3 and y′ = −√3 and can solve for y′′ at the point
in question.
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It is not pretty, but with a complicated equation you can’t expect things to be pretty.
The point is that we could cope, and all we needed to cope was care and the ability to avoid
panic.

3.3 Parametric Differentiation

This is a technique for finding derivatives when, instead of a link between x and y, you
have both x and y expressed in terms of a parameter.

It is a situation that often occurs with complicated curves.

3.10. Example. A curve plotting device traces out a curve which is described parametrically
by means of the equations

x = cos3 t , y = sin3 t

What is the equation of the tangent at the point where t =
π

3
?

Solution We need to find
dy

dx
.

The option of getting y as a function of x is not attractive. You can do it, but the result
will be a mess, and not the sort of function you relish differentiating.

The best way is to use the chain rule.

dy

dt
=

dy

dx

dx

dt

And so
dy

dx
=

dy

dt
divided by

dx

dt

In general, if f is a function of x and x a function of t we have

df

dx
=

df
dt
dx
dt

Finding the derivatives of x and y with respect to t is easy enough.

x = cos3 t and so
dx

dt
= 3cos2 t(− sin t) (chain rule).

y = sin3 t and so
dy

dt
= 3 sin2 t(cos t).

Therefore
dy

dx
=

3 sin2 t cos t

3 cos2 t(− sin t)
= − tan t

This is typical. The derivative will be a function of the parameter.
When t = π/3, tan t =

√
3, and so the gradient of the tangent at this point is −√3.

We also have that

When t =
π

3
, y =

3
√

3
8

, x =
1
8

So the tangent has equation (
y − 3

√
3

8

)
= −

√
3
(

x− 1
8

)
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3.11. Example. The cardioid is a curve which can be described by the equations

x = 2cos t + cos 2t , y = 2 sin t + sin 2t

Find the tangent at the point where t = π/4.

The chain rule enables you to calculate higher derivatives for these parametrically de-
scribed curves.

3.12. Example. A point moving round in a circle of radius r with constant angular velocity
has x and y coordinates given by

x = r cos ωt , y = r sinωt

Find
dy

dx
and

d2y

dx2
in terms of t.

Solution First get the derivatives of y and x with respect to t.

dy

dt
= rω cos ωt ,

dx

dt
= −rω sin ωt , and so

dy

dx
= − cot ωt

For the second derivative use the chain rule

d2y

dx2
=

d

dx

(
dy

dx

)

=
d

dx
(− cot ωt)

Replace f by − cot ωt in our earlier formula

d

dt
(− cot ωt) =

d

dx
(− cot ωt)

dx

dt

Therefore

ω cosec2 ωt =
d

dx
(− cot ωt)(−rω sin ωt)

Therefore

d2y

dx2
= −1

r
cosec3 ωt
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Chapter 4

More Functions

4.1 Introduction

This week we complete our collection of basic functions. We shall look at their properties,
shall compute their derivatives and shall look at the sort of problems that make them
necessary.

4.1.1 The inverse trig functions

4.1. Q. In the rocket launch problem that we looked at briefly in example 4 in the section
on rates of change we had the following picture.

This produced the formula

tan θ =
h

100
=

t2

4
The question then was to do with how quickly θ was changing relative to t, and the fact
that we didn’t have θ as a function of t was handled by means of implicit differentiation.
However, there are other related questions that one could ask, such as

4.1. Example. What is θ when t = 6?

Solution In words it is “the angle whose tangent is 9”, more precisely it is “the angle
between 0 and π/2 whose tangent is 9”.

This is an answer of sorts, but it is not really the answer we were looking for. What we
would like is an answer in radians or degrees. How are we to get it?

In such cases we can’t get a proper answer to the question using just our existing reper-
toire of functions. So if you want to be able to answer such questions you need some new
functions, functions whose properties you can analyse, whose values you can compute and
which will deliver answers of the type you are looking for.

The functions that enable one to get the answers sought are the inverse trig functions.
The word “inverse” is used not in the sense of “one over” but in the sense of reversing

the processes carried out by the original.
Remember the “black box” picture we had of a function.
x was the input to the box and f(x) the output. What the inverse function for f does

is reverse the process. It takes f(x) as input and turns it back into x.
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The natural way to start trying to do this is to begin with the graph of the original. To
use this to find f(b) for a given b, you locate b on the x-axis, move from there up to the
curve and then from there to the y-axis. The picture is

To reverse the process you are trying to get from d = f(c) back to c. So locate d on the
y-axis, move to the curve and then from there to the x-axis.

However, when you try this with the sine curve you realise there is a snag. When you
try to move to the curve from the y-axis you find that you have a choice. Functions aren’t
allowed to make choices; they have to be consistent in operation. So the choice has to be
made when the function is defined, and that is why we set

arcsin(x) = the angle between − π

2
and

π

2
whose sine is x

Without the range specification the definition would be ambiguous. So we make a choice
and then stick to it.

Similar choices and definitions are made for arccos and arctan. For arccos the range is
(0, π) and for arctan it is

(−π
2 , π

2

)
.

Alternative Notation: The functions arcsin, arccos and arctan are often called sin−1,
cos−1 and tan−1, respectively. It is a confusing piece of notation, but it is long established
and so you need to be aware of it. Your calculators probably use it.

4.1.2 Differentiating the inverse trig functions

We shall begin with the function arctan, because this is the one with fewest complications.

Arctan:

Suppose that

y = arctan x

Then, by definition

tan y = x

Differentiating both sides we get

sec2 y
dy

dx
= 1

And so

dy

dx
=

1
sec2 y

This gives us an expression for
dy

dx
, but not in a form we can use very easily. y is a function

of x. So we want y′ as a function of x also. What we have got is y′ as a function of y. So
we need to carry the calculation further.

sec2 y = 1 + tan2 y

= 1 + x2
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Substituting this into our formula

d

dx
(arctan x) =

1
1 + x2

This can now be added to our list of standard derivatives.

Arcsin:

Suppose that

y = arcsin x

Then, by definition

sin y = x

Differentiating both sides we get

cos y
dy

dx
= 1

And so

dy

dx
=

1
cos y

Again we have to get from this to an expression in x rather than y.

cos2 y = 1− sin2 y

= 1− x2

Therefore

cos y = ±
√

1− x2

Now we have to make a decision. Only one of the plus and minus sign can be right. To see
which is, look at the graph of arcsin x. The slope is always positive, and so it is the plus
sign we want here. Therefore

d

dx
(arcsin x) =

1√
1− x2

The argument for arccos parallels that for arcsin, except for the end where this time the
graph makes it clear that we are to choose the minus sign. So

d

dx
(arccos x) =

−1√
1− x2
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4.1.3 Log and Exp

4.2. Example. When sound passes through a glass window its intensity is reduced according
to the formula

I0 − I1 = I0

(
1− 10−k

)
where I0 and I1 are the intensities outside and inside respectively, and k is some constant
which depends on the particular window. Suppose that the outside noise (loud street traffic)
is measured at 6.5 × 10−5 Wm−2 and that we want this reduced to a conversational level
5.0 × 10−6 Wm−2. What should k be?

Solution Rearranging the formula gives

1− 10−k =
I0 − I1

I0

Therefore

10−k = 1− I0 − I1

I0

=
I1

I0

So

10k =
I0

I1

=
6.5 × 10−5

5.0 × 10−6

= 13

So we want that value of k for 10k = 13.

This is another inverse function game. This time we need an inverse function for the
function defined by f(x) = 10x.

The name given to the inverse function in this case is called logarithm (to the base
10).

Any a > 1 can be used as a base for logarithms. However, only three values of a are
important in practice:

1. a = 10 used in the measurement of sound and in the measurement of earthquake
intensities.

2. a = 2 used in computer timings (2 because computers do their arithmetic in base 2).

3. a = e — adopted because it gives the logarithm with the nicest general properties.

All the log functions have nice properties in connection with multiplication. A list is
given at the start of the handout.

The graph of y = ex is
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4.1.4 The derivative of log

To get this you need to go back to the Newton quotient, and the argument is not particularly
easy. It is sketched in the handout. The result is that

d

dx
(logax) =

M(a)
x

where M(a) is some constant depending on a.
The so-called Natural Logarithms are those for which this constant is 1. The corres-

ponding value of a is the number e given in the handout. This is the only log function we
shall use in the course. The notation for it is ln.

d

dx
ln x =

1
x

Learn this: it is important.
The graph of y = loge x is important. Note it is only defined for x > 0. This corresponds

to the fact that ex > 0 always (see above graph).

4.1.5 The Exponential Function

Let e be the number we introduced in connection with the natural logarithms. The expo-
nential function is defined by

exp(x) = ex

Some useful properties of exp come from the standard laws of indices.

exey = ex+y , e−x =
1
ex

, e0 = 1

And so
exp x exp y = exp(x + y) , exp(−x) =

1
exp x

, exp 0 = 1

It follows from the definitions that exp is the inverse function for ln and that ln is the
inverse function for exp. In other words

ln(exp(x)) = x , exp(ln(x))

So applying one function and then the other gets you back to where you started.

4.1.6 The derivative

We can get this from the derivative of ln by using the standard method for dealing with
inverse functions.

If

y = exp x
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then

x = ln y

Differentiating with respect to x

1 =
1
y

dy

dx

So

y =
dy

dx

Substituting for y

d

dx
(ex) = ex

4.1.7 The scientific importance of exp

Whenever we have a situation concerning growth or decay exp is likely to put in an ap-
pearance. The reason for this is to be found in the relation between the function and
its derivative. It is common in growth/decay situations for the rate of change to be pro-
portional to the current state. In mathematical terms this means a derivative which is a
constant times the function being differentiated, in other words y′ = ky, and the function
with that property is the exponential.
4.3. Example. Consider a population of animals or plants. Without predators to keep
things in check, the colony will grow at a rate proportional to its current size — the rate
of proportionality k being dependent on the birth and death rate. So we have

dP

dt
= kP

where P = P (t) is the size of the population at time t.
4.4. Example. (Newton’s Law of Cooling)

A body heats up or cools down at a rate proportional to the temperature difference
between it and its surroundings. So

dθ

dt
= kθ

where θ is the temperature difference and k a constant.
4.5. Example. Substances dissolve (e.g. sugar in water) at a rate proportional to the current
mass of undissolved material. So we have the same sort of law as in the other two.
4.6. Example. Radioactive decay follows the same pattern.

With radioactive substances you speak of the “half-life” of the substance, and what this
tells you is how long it will take the substance to decay to half its present mass. So it is
telling you what k is.

The only function which fits this y′ = ky pattern is y = Aekt where A and k are
constants. A is the initial state and k the constant of proportionality.

A nice feature of this type of situation is that only two readings are necessary to enable
you to calculate A and k and thereby get the complete behaviour pattern.
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4.7. Example. A steel ingot is cooling down to room temperature (which is presumed con-
stant at 15◦C). After 3 hours its temperature is 150◦C and after 10 it is 30◦C. What is the
temperature as a function of time?

Solution Let the temperature difference at time t be θ. Then

θ = Aekt for some A and k

From the given data

135 = Ae3k (1)

15 = Ae10k (2)

Dividing

9 = e−7k

Therefore

ln 9 = −7k

Therefore

k = −1
7

ln 9

This gives k, and putting the value into (1) will give A.

4.1.8 The hyperbolic trig functions

These are certain combinations of ex and e−x which occur often enough to justify giving
them names of their own.

4.8. Definition.

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
, tanh x =

cosh x

sinhx

The justification for giving them similar names to the trig functions is that they have
similar properties. In particular:

d

dx
(sinh x) = cosh x

d

dx
(cosh x) = sinhx

d

dx
(tanh x) =

1
cosh2 x

cosh2 x− sinh2 x = 1
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Chapter 5

Maxima and Minima

5.1 Introduction

This is another batch of applications. Once again we are faced with a situation which is
changing, but instead of asking how quickly, the question is going to be how big or small a
quantity is going to get. Typical situations are minimum costs, maximum stresses, and so
on.

5.1. Definition. Let y = f(x). A critical point (sometimes called a stationary point)

is a point on the curve y = f(x) where
dy

dx
= 0.

dy

dx
= 0 precisely when the tangent to the curve is horizontal.

There are three possibilities:

1. The shape of the curve near the critical point P is

Here the slope is positive to the left of the critical point and negative to the right.
Such a point is called a local maximum, because the curve has reached its highest
point — at least its highest in this locality.

2. The shape of the curve near the critical point P is

Here the slope is negative to the left of the critical point and positive to the right.
Such a point is called a local minimum.

3. The shape of the curve near the critical point P is

Here the slope has the same sign on both sides of the critical point. Such points are
called points of inflexion. They are important geometrically, but won’t concern us
much in this course.

5.1.1 Finding critical points and determining their nature

Finding them is easy. Calculate the derivative, equate it to zero and solve the resulting
equation.

There are two main methods of determining the nature of a critical point:

1. Look at the sign of the slope on either side of the critical point. This always works
and is not usually difficult.
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2. The second derivative test. In the right circumstances this can be very fast. The
drawbacks are that sometimes it can be messy to calculate the second derivative, and
there are times when the test is inconclusive. The test says

(a) If
d2y

dx2
is positive, then

dy

dx
is increasing. To increase through a value where it

is zero it must be going from negative to positive, and if we check that against
our list we see that we have a local minimum. So y′′ > 0 means that we have a
local minimum.

(b) In the same way we can see that y′′ < 0 means that we have a local maximum.
(c) If y′′ = 0, the test gives no information. You could, in fact, have anything. The

curves y = x3, y = x4, y = 1 − x4 all have critical points at x = 0 and all have
y′′ = 0. The first is a point of inflexion, the second a local minimum and the
third a local maximum. You check these for yourselves.

5.2. Example. Find and determine the nature of the critical points on the curve y = x2(x−
1).

Solution Differentiating gives

dy

dx
= 2x(x− 1) + x2 = x(3x− 2)

So there are critical points at x = 0 and at x =
2
3
.

Method 1:
Slightly to the left of x = 0 we have that x and 3x − 2 are both negative. So their

product is positive. Thus y′ is positive slightly to the left of x = 0. Slightly to the right it is
negative. Therefore x = 0 is a local maximum. With the other critical point we are negative
slightly to the left and positive slightly to the right. So this one is a local minimum.
Method 2:

The second derivative is 6x−2. This is negative when x = 0 and positive when x = 2/3.
On this occasion the second derivative test was quicker because the second differentiation

was easy and because we didn’t hit the awkward case. You aren’t always so lucky.

5.1.2 Global Maxima and Minima

In practical problems we are more likely to be interested in the greatest and smallest values
that a quantity can take over a range rather than just in the vicinity of a point. For these
it isn’t quite enough to use the derivative to find the critical points, but it nearly is.

5.1. Q. Given a function y = f(x) and a range a ≤ x ≤ b we want to find the largest and
smallest values attained by f .

The range is there because real life problems are like that. In mathematics it is O.K. to
talk of all possible x from minus infinity to plus infinity, but in real situations there will be
commonsense restrictions.

So we have pictures such as those shown below.
In the diagram E is the global maximum (and is an endpoint), B is the global minimum

(and is not an endpoint), C is a local maximum and D a local minimum. The theorem that
governs things is:
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5.3. Theorem. If f can be differentiated, the greatest and least values of f occur either
at critical points or at one of the endpoints of the range.

This leads to the following procedure:

1. Find the critical points of f .

2. Calculate f at each of these critical points and (if applicable) at the endpoints. Select
the greatest and smallest values from the list you have calculated.

5.4. Example. For a belt drive the power transmitted is a function of the speed of the belt,
the law being

P (v) = Tv − av3

where T is the tension in the belt and a some constant. Find the maximum power if
T = 600, a = 2 and v ≤ 12. Is the answer different if the maximum speed is 8?

Solution First find the critical points.

P = 600v − 2v3

And so
dP

dv
= 600− 6v2

This is zero when v = ±10.
Commonsense tells us that v ≥ 0, and so we can forget about the critical point at −10.
So we have just the one relevant critical point to worry about, the one at x = 10. The

two endpoints are v = 0 and v = 12.
We don’t hold out a lot of hope for v = 0, since this would indicate that the machine

was switched off, but we calculate it anyway.
Next calculate P for each of these values and see which is the largest.

P (0) = 0 , P (10) = 6000 − 2000 = 4000 , P (12) = 7200 − 3456 = 3744

So the maximum occurs at the critical point and is 4000.
When the range is reduced so that the maximum value of v is down to 8, neither of the

critical points is in range. That being the case, we just have the endpoints to worry about.
The maximum this time is P (8) = 4800 − 1024 = 3776.

5.5. Example. A box of maximum volume is to be made from a sheet of card measuring
16 inches by 10. It is an open box and the method of construction is to cut a square from
each corner and then fold.

Solution
Let x be the side of the square which is cut from each corner. Then AB = 16 − 2x,

CD = 10− 2x and the volume, V , is given by

V = (16− 2x)(10 − 2x)x
= 4x(8− x)(5− x)

= 4(x3 − 13x2 + 40x)
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And so

dV

dx
= 4(3x2 − 26x + 40)

The critical points occur when
3x2 − 26x + 40 = 0

i.e. when

x =
26±√676 − 480

6

=
26± 14

6

The commonsense restrictions are 5 ≥ x ≥ 0. So the only critical point in range is x = 2.
Now calculate V for the critical point and the two endpoints.

V (0) = 0 , V (2) = 144 , V (5) = 0

So the maximum value is 144, occurring when x = 2.

5.6. Example. The illumination at P from the light source L is given by

y =
100 cos α

x2

where x is the distance from L to P and α is the angle that LP makes with the vertical.
The distance of P from the point on the floor directly below L is 5 feet. At what height
above the ground should L be if y is to be maximised?

5.7. Example. A simple model for the flow of cars along a straight level road is

f(v) =
v

L + vT + v2

2a

where v is the speed of the cars, L the car length, a is the maximum acceleration of a car
and T is the thinking time of a driver. With L = 4 metres, T = .8 seconds and a = 7
metres/sec2 find the car speed which gives the maximum traffic flow.



Chapter 6

Integration

6.1 Introduction

If you are going to understand a process, it helps if you know what the process is for. And
in mathematics that means knowing what problem people were trying to solve when they
came up with a particular set of ideas. In the case of integration the basic problem was
this:

6.1. Q. How do you calculate the area under the curve y = f(x)?

This is not just of geometrical interest, because in applied mathematics and physics the
area under a curve often measures something.

6.1. Example. Suppose that we plot speed against time for a car journey. In the simple
case there will be periods where the speed will be constant. Let t0 to t1 be such an interval.
We then have the graph

The speed maintained over this time interval is v, and it is not difficult to see that the
distance travelled is v(t1− t0) and that this is also the area under this section of the curve.

Now let us consider the general case of a journey in which the speed varies.
It is no longer clear how we can get an accurate figure for the distance simply by looking

at the graph, but it is not difficult to see how we could get a very good estimate.
Chop the time axis up into small intervals, say of a minute each.
In each minute the speed will vary, but not by much. So the speed at the end of the

minute will be a good estimate of the average speed during the minute. So it times the
time gives a good estimate of the distance travelled during this minute. Do this for each
minute and add up.

In area terms we have computed the sum of the areas of the shaded rectangles, and this
area is clearly a reasonable approximation to the area under the graph. So area under the
graph is at worst a good approximation to the distance covered.

It is also clear that if we shrink the lengths of the time intervals the approximation will
get better — both to the distance covered and to the area under the curve.

So it is at least plausible that

distance covered = area under the curve

In a similar sort of way, if you plot force against distance for something like a piston you
find that the area under the curve is the total work done.
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So areas aren’t just about geometry.
Now consider the curve given by y = f(x).
We want a method of calculating the area under the curve between x = a and x = b.

Let F (x) be the area bounded by the curve, the x-axis and verticals dropped from the
points (a, f(a)) and (x, f(x)).

As with the speed/time curve it seems a good idea to begin with just a small section,
say that between x = x0 and x = x0 + h.

In terms of the area function F this is F (x0 + h)− F (x0).
On the diagram it is the shaded area.
We are supposing that h is small, and so a reasonable approximation to this area is got

by taking the rectangle of height f(x0) and width h. This rectangle has area f(x0)h, and
so

Shaded Area = F (x0 + h)− F (x0) ≈ f(x0)h

And so

F (x0 + h)− F (x0)
h

≈ f(x0)

And the smaller h is the better this approximation will be.
This suggests that

lim
h→0

F (x0 + h)− F (x0)
h

= f(x0)

But the expression on the left is just the derivative of F at x0. So

F ′(x0) = f(x0)

We are trying to find the area under the curve. If we had an explicit expression for the
function F , our problems would be over. What the link between F and f gives us is a very
large clue as to what F is. We know f , and so all we have to is work out what function
has it as derivative.

So to find F we start from f (which is known) and we try to reverse the differentiation
process. If we succeed, we shall have F and can use it to calculate the areas we require.

It probably sounds tricky, but it needn’t be. We have done enough differentiation by
now to be able to recognise quite a lot of situations. If I ask you which function has
derivative cos x, it shouldn’t take very long for you to answer sin x. That is the sort of
reversal problem we are setting ourselves.

This process of “anti-differentiation” is known as integration.

6.1.1 Indefinite Integrals

6.2. Definition. If F is a function with the property that F ′ = f , we say that F is an
indefinite integral for f .

Some books prefer to say that F is a primitive for f .
Both terms mean simply that F ′ = f .
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Notation: Since the starting point in the integration process is f rather than F , it is
convenient to have a notation that focuses just on f .

The standard notation for “indefinite integral of f” is∫
f(x) dx

Terminology: When speaking of
∫

f(x) dx, f is referred to as the integrand.
“integrand” = function to be integrated
x is the variable of integration.

6.1.2 The Constant of Integration

The reason for the word “indefinite” is that integrals are not uniquely specified in the way
that derivatives are.

For example, the functions sin x, 1 + sin x and 300 + sinx all have derivative cos x. So
all are equally valid as answers to the question “What function has derivative cos x?”

Therefore, all are indefinite integrals for cos x.
There is nothing that can be done about this, but fortunately this as far as the arbitrar-

iness goes.
Indefinite integrals are specified to within an arbitrary additive constant known as the

constant of integration. Many books choose to stress this by always writing∫
f(x) dx = F (x) + c

rather than ∫
f(x) dx = F (x)

and give the impression that lightning will strike if you forget to mention c.
The truth is more sensible. Sometimes this constant is important and sometimes it

isn’t. When it isn’t nothing is lost by leaving it out. The guidelines are:

1. If you are solving a differential equation, the c is likely to be important; so include it.

2. If you are computing a “definite integral”, it is going to cancel, and so you might as
well miss it out.

3. If you are just doing integration practice — “learn how to integrate by doing the
following page of integrals” — it is irrelevant; so please yourself. The rightness or
wrongness of your answer is unaffected.

Common sense will get you through; but if in doubt, include it.

6.1.3 How to Integrate

The strategy is the same as that for differentiation:

1. We collect together a set of standard integrals.
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2. We develop a set of techniques for reducing complicated integrals to these standard
ones.

The standard integrals are got from the table of standard derivatives by reading that tables
from right to left instead of from left to right. For example, since the derivative of sine is
cosine it follows that the integral of cosine is sine.

This produces the following list:

d

dx
(sin x) = cos x and so

∫
cos x dx = sin x

d

dx
(cos x) = − sin x and so

∫
(− sin x) dx = cos x

which tidies up as ∫
sin x dx = − cos x

d

dx
(tan x) = sec2 x and so

∫
sec2 x dx = tan x

d

dx
(xn+1) = (n + 1)xn and so

∫
(n + 1)xn dx = xn+1

which tidies up as ∫
xn dx =

xn+1

n + 1
( provided n 6= −1)

d

dx
(ln x) =

1
x

and so
∫

1
x

dx = ln x if x > 0

The restriction to x > 0 is because ln x is not defined when x < 0.∫
1
x

dx = ln(−x) if x < 0

d

dx
(ex) = ex and so

∫
ex dx = ex

d

dx
(arctan x) =

1
1 + x2

and so
∫

1
1 + x2

dx = arctan x

d

dx
(arcsin x) =

1√
1− x2

and so
∫

1√
1− x2

dx = arcsin x

And a few others that you can add for yourself.
There is a much longer list in section 11.3 of the handbook, but the above are the ones

that are worth carrying round in your head.
The rules for getting beyond this standard list are also got from our work on differen-

tiation. The first two are fairly obvious:

Sums:
Because (F + G)′ = F ′ + G′ it follows that∫

(f(x) + g(x)) dx =
∫

f(x) dx +
∫

g(x) dx
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Scalar Products:
Because (λF )′ = λF ′ when λ is a constant we have∫

λf(x) dx = λ

∫
f(x) dx

6.3. Example. ∫
(x2 + cos x) dx =

∫
x2 dx +

∫
cos x dx =

x3

3
+ sin x

6.4. Example. ∫ (
1
x

+ 3ex − sin x

)
=
∫

1
x

dx +
∫

3ex dx +
∫

(− sin x) dx

=
∫

1
x

dx + 3
∫

ex dx−
∫

sin x dx

= ln x + 3ex + cos x

Try it and see:
This is not a rule but a method.
If an integral looks like a minor variant of one that you could do in your head, try a

“guess, test, make adjustments and retest” approach.

6.5. Example.
∫

cos 3x dx

Your first thought is probably sin 3x. (This is the guess.)
Test your guess by differentiating. You get 3 cos 3x.
This is out by a factor of 3, but is close enough to enable you to see what adjustment

you need to make. Making it gives you a second guess of
1
3

sin 3x

Testing this gives what you want. So∫
cos 3x dx =

1
3

sin 3x

N.B. When using this approach your final step should always be to check your answer by
differentiating it.
6.6. Example. ∫

dx

1 + 4x2

Solution Apart from the 4, this is arctan x. 4x2 = (2x)2, and so our first try is arctan(2x).
Differentiate this and see what you get.

6.7. Example. ∫
dx√

9− x2

Solution Again we have something which looks like a standard integral. The standard
integral that we nearly have this time is arcsin. That leads to

√
1− x2, rather than

√
9− x2.

So begin by taking the 9 outside a bracket to get
√

9(1− x2/9). That should suggest
arcsin(x/3) as a first try.
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6.1.4 The Definite Integral

The indefinite integral is a function; the definite integral is a number got by putting
values into that function.

Let
F (x) =

∫
f(x) dx

So F is a function with the property that F ′ = f .

6.8. Definition. The definite integral of f from a to b is denoted by
∫ b
a f(x) dx and is

defined to be F (b)− F (a).

6.9. Definition. a and b are called the limits of integration.

Notation: [F (x)]ba is used to mean F (b)− F (a).
6.10. Example. ∫ 2

1
x dx =

[
x2

2

]2

1

= 2− 1
2

=
3
2

6.11. Remark. Note that the constant of integration is of no importance when you are
calculating a definite integral. Include it and you get

(F (b) + c)− (F (a) + c) = F (b)− F (a)

— the same answer as you would have got by ignoring the constant in the first place.
6.12. Remark. The definite integral is the one that is used to calculate areas, volumes,
lengths, moments of inertia and a host of other things.
Properties of the Definite Integral∫ a

b
f(x) dx = −

∫ b

a
f(x) dx (1)

So reversing the limits of integration multiplies the answer by −1.
Proof. Let F (x) be an indefinite integral for f(x). Then∫ a

b
f(x) dx = F (a)− F (b)

= −(F (b)− F (a))

= −
∫ b

a
f(x) dx

∫ b

a
f(x) dx +

∫ c

b
f(x) dx =

∫ c

a
f(x) dx (2)

Proof. F (x) as before. Then∫ b

a
f(x) dx +

∫ c

b
f(x) dx = (F (b)− F (a)) + (F (c) − F (b))

= F (c) − F (a)

=
∫ c

a
f(x) dx
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Using the Definite Integral to Calculate Areas

This is slightly more complicated than one might hope, but not by much. The problem
is caused by the fact that definite integrals can be either positive or negative, while areas
are always positive.

Case 1: The curve is entirely above the x-axis
This is complication free.
Choose a reference point (r, 0) on the x-axis, and let F (x) be the area under the section

of the curve between (r, f(r)) and (x, f(x)).
As we saw earlier, F ′(x) = f(x), and so F (x) =

∫
f(x) dx.

Now consider the area under the curve between x = a and x = b.
F (b) is the area between x = r and x = b; F (a) is that between x = r and x = a.
The cross-hatched area is the difference, i.e. F (b) − F (a). Therefore the area sought is∫ b

a f(x) dx.

6.13. Example. Find the area under the curve y =
√

x between x = 0 and x = 4.

Solution The curve does not go below the x-axis and so

Area =
∫ 4

0

√
x dx

=
[
2
3
x3/2

]4

0

=
16
3

Case 2: The curve is entirely below the x-axis
This time y = f(x) is negative, and so the height of the rectangle we looked at when

considering the difference between F (x0 + h) and F (x0) is not f(x0) but −f(x0) (since
heights can’t be negative). So F ′(x) = −f(x), and so for areas under the x-axis

Area = −
∫ b

a
f(x) dx

Case 3: The curve is part above and part below the x-axis
You have to split the problem up and consider the two parts separately. Use case 1 to

deal with the section above the x-axis and case 2 to deal with the section below the x-axis.

6.14. Example. Find the area bounded by the curve y = sin x, the x-axis and the lines
x = 0 and x = 2π.

Solution Draw a picture so that you can see what is happening.
From 0 to π the curve is above the axis and from π to 2π it is below.
Above the axis we have

Area =
∫ π

0
sin x dx

= [− cos x]π0
= − cos π + cos 0
= 2
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And below we have

Area = −
∫ 2π

π
sinx dx

= [cos x]2π
π

= cos 2π − cos π

= 2

Therefore the total area is 4.

Note what would have happened had we not split the area into two sections. The two
parts would have cancelled, giving us an area of zero — which is clearly silly. In this case

we could have noted, by symmetry, that the required area = 2
∫ π

0
sin x dx = 4.

The same “assemble the bits” approach works on areas between curves.

6.15. Example. Find the area between the curve y = sinx and the line y =
2x
π

and above
the x-axis.

Solution Again the best way to begin is by drawing a picture.

Here A =
(π

2
, 1
)

and lies on both y = sin x and y =
2x
π

.
The next step is to work out where the line and curve cross. This will give us the limits

for the integrals.
In this case they cross when x = 0 and when x = 1.
From the picture we can see that the area we want is the area under the curve minus

that under the line (shaded). Therefore

Area =
∫ π

2

0
sin x dx−

∫ π
2

0

2x
π

dx

= [− cos x]
π
2
0 −

[
x2

π

]π
2

0

= 1− π2

4
1
π

= 1− π

4

6.16. Example. Find the area between the curve y = x2 and the line y = 2.

6.17. Example. Find the area between the curves y = x2 and y = x4.



Chapter 7

Techniques of Integration

7.1 Introduction

There are two main methods for dealing with integrals which are too complicated either to
do in your head or by the guess and test method. They are

1. Integration by substitution

2. Integration by parts

In addition there is a trick involving algebraic manipulation called “partial fractions”
which is quite often useful.

Over the next few lectures we shall be seeing how to use these techniques and how to
tell which one to try.

7.2 Integration by Substitution

This is based on the chain rule.
Let f be a function of a function, e.g. sin(x2 + 1) or exp(tan x). So f is a function of u

where u is a function of x.
If you write down the Leibniz version of the chain rule and do some manipulations you

get the formula: ∫
f(u) du =

∫
f(u)

du

dx
dx

The right hand side looks complicated; the left much less so. We get from one to the other
by working in terms of the new variable u and by pretending that the dx has cancelled.

And this is what integration by substitution comes down to: change the variable you are
working with and hope that this will result in a friendlier integral.

7.1. Example. Let

I =
∫

lnx

x
dx

It looks complicated, but watch what happens if we introduce a new variable by setting
u = ln x.

du

dx
=

1
x

and so du =
1
x

dx

51
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That last step of writing du in terms of dx is a piece of notational sleight of hand, but it
works and is the easiest way to see what to do; so use it.

Therefore when we substitute for x and for dx we get

I =
∫

ln x
1
x

dx =
∫

u du

The original integral has been transformed into one we can do.

I =
∫

u du

=
u2

2

=
1
2
(ln x)2

7.2.1 The technique

1. Decide what function of x the new variable u is to be.

2. Differentiate to get
du

dx
and then separate the du and the dx via du =

du

dx
dx.

3. Substitute for x and for dx to get a new integral entirely in terms of u and du.

4. Do the integration.

5. Substitute back from u to x so as to get an answer in terms of the original variable.

The tricky part is (1), and here the two questions you should ask are

• Does part of the function you are integrating (often called the integrand) look like
a function of a function, i.e. are you looking at f(g(x))? If so then u = g(x) is worth
a try.

• Is part of the integrand the derivative of another part? If it is, you may well have
spotted u′ and can figure out u from that.

In example 1 it was question 2 that provided the clue. We had a ln x and its derivative
x−1. That suggested u′ = x−1 and hence u = ln x.

7.2. Example. I =
∫

x sin(x2 + 1) dx
An obvious “yes” to question 1; so try u = (x2 + 1).

7.3. Example.

I =
∫

sec2 x√
1 + tan x

dx

“Yes” to both questions. We have a function of a function in
√

1 + tan x and also sec2 x as
the derivative of tan x. Both u = 1 + tan x and u = tan x will work.

7.4. Example.

I =
∫

cos(ln x)
x

dx

Again we have a “yes” to both questions, and this tells us to try u = ln x.
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7.2.2 How to handle definite integrals

Be clear about which variable the limits of integration refer to.
The best way to do this is to keep writing them down as a reminder to yourself.

7.5. Example.

I =
∫ 1

1/2

arcsin x√
1− x2

dx

The obvious substitution is u = arcsin x. (Hint supplied by question 2.)

du =
dx√

1− x2

and so

I =
∫ x=1

x=1/2
u du

=
[
1
2
u2

]x=1

x=1/2

=
[
1
2
(arcsin x)2

]x=1

x=1/2

=
1
2

(π

2

)2
− 1

2

(π

6

)2

=
π2

8
− π2

72

=
π2(9− 1)

72

=
π2

9

7.3 Integration by Parts

This is based on the rule for differentiating products. There are two versions of it. Choose
one and stick with it.

Don’t try to use both; it will lead to confusion if you do.

Version 1 (Evans, Stroud and CALM)
Let u and v be functions of x. If you differentiate the product uv, rearrange and then

integrate you get the formula ∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

To use this formula you take the function you are being asked to integrate and split it up as
a product of something you are going to think of as u and something you are going to think
of as v′. For example if the integrand were x cos x, you would take u = x and v′ = cos x.
Putting these into the right hand side, and noting that if v′ = cos x v = sin x you get that∫

x cos x dx = x sin x−
∫

sin x dx = x sin x + cos x
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If you have met this version before and are happy with it then stick with it. If not then
skip it and use version 2 instead.

Version 2

This time we label things slightly differently, do the manipulation and get∫
u(x)v(x) dx = v(x)

∫
u(x) dx−

∫ (∫
u(x) dx

)
dv

dx
dx

As a formula it is nothing like as pretty, but I find it easier to use — largely because it
begins with the integral you are actually facing, rather than with a v which exists only in
your head. Don’t remember the formula; instead remember the recipe in words.

Break the integrand up as a product u times v. Then the integral of uv
is v times the integral of u minus the integral of (the integral of u times the
derivative of v).

So we have two sections to the integrand and are going to integrate one and differentiate
the other. The gain is that many functions simplify on differentiating.

With the example from above we have uv = x cos x. x is the part that will simplify
on differentiating. So we take this as v and the other part (cos x) as u. Then v′ = 1,∫

u dx = sinx and so when we put these into the formula we have∫
x cos x dx = x sin x−

∫
1. sin x dx = x sin x + cos x

Essentially the same calculation as before, but a slightly different way of thinking about it.
The gains are a more natural start position and a process which breaks up into simple steps.

7.6. Example. I =
∫

x ln x dx

Solution The integrand is clearly a product. We are going to have to integrate one bit and
differentiate the other. We know how to differentiate ln x but don’t know how to integrate
it. So this is clearly the best choice for v, leaving u = x.

dv

dx
=

1
x

and
∫

u(x) dx =
x2

2

Therefore

I =
x2

2
. ln x−

∫
x2

2
1
x

dx =
x2

2
. ln x−

∫
x

2
dx =

x2

2
ln x− x2

4

The point is that the routine got me from the initial integral that I couldn’t see how to do

to the easy
∫

x

2
dx.

7.3.1 Guidelines on the choice of u and v

1. Whatever we choose for u is going to have to be integrated at the start in order to
get the routine moving. We don’t want this first stage to be hard. So ask “What is
the largest chunk of the integrand that I can integrate in my head?” If there is an
obvious answer, try taking this chunk for u and letting v be the rest.



7.3. INTEGRATION BY PARTS 55

2. If (1) doesn’t give a clear lead, switch your attention to v and ask “Is there part of the
integrand which will simplify on differentiating?” If so, you have a possible candidate
for v.

Functions which simplify on differentiating
xn for n ≥ 1, ln x, arctan x, arcsin x.

7.7. Example. I =
∫

x sin x dx

Solution Both x and sinx can be integrated in your head. However, x simplifies on
differentiating, while sin x does not. So take u = sin x and v = x.

7.8. Example. I =
∫

x arctan x dx

Solution Although both components are on the “simplify on differentiating” list, x is
something we can integrate in our heads, while arctan x is not. So take u = x and v =
arctan x. Then ∫

u(x) dx =
x2

2
and

dv

dx
=

1
1 + x2

Therefore

I =
x2

2
arctan x− 1

2

∫
x2

1 + x2
dx

Not home yet, but we have made progress.

∫
x2

1 + x2
dx =

∫
(1 + x2)− 1

1 + x2
dx =

∫ (
1− 1

1 + x2

)
dx =

∫
dx−

∫
dx

1 + x2

7.9. Example. I =
∫

sin3 x dx

Solution Apply the criterion. The largest part of the integrand that you can integrate in
your head is sinx. So take this as u, the rest as v and trust to providence. The result is

I = − cos x sin2 x + 2
∫

sin x cos2 x dx

Again there is still work to do before we get an answer.
However, if you put u = cos x into the righthand integral, nice things happen.

7.10. Example. I =
∫

arctan x dx

Solution Another hard one. However, arctan x is still a function we’d be happier differ-
entiating. So think of this as v. If this is v and the whole thing is uv, then u must be
1.

Try it and see what happens.

Note that integration by parts doesn’t always get you all the way to the answer. All it
hopes to achieve is to give you an easier integral than the one you started with. How you
deal with this easier integral is your problem.
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7.4 Partial Fractions

This is an algebraic technique used on integrals of the form
∫

f(x)
g(x)

dx where f(x) and g(x)

are polynomials.
In case you have forgotten, a polynomial is a function of the form anxn + an−1x

n−1 +
. . . + a2x

2 + a1x + a0. where the ai are numbers and x is a variable.
So x3 + x− 4, 2x4 + 1 and 3x2 + 2x− 5 are all polynomials.
The idea is to put the polynomial fraction into a form which makes the integration

easier to manage.
The degree of a polynomial is the highest power of x that occurs. So the examples

listed have degrees 3, 4 and 2 respectively.

7.11. Example.

I =
∫

dx

(x− 1)(x− 2)
dx

Solution Observe that

1
x− 2

− 1
x− 1

=
(x− 1)− (x− 2)
(x− 1)(x − 2)

=
1

(x− 1)(x− 2)

And so ∫
dx

x− 2
−
∫

dx

x− 1
=
∫

dx

(x− 1)(x− 2)

On the right we have the original integral — which we didn’t know how to do as it stood
— and on the left we have two integrals which are close enough to one on the standard list
for us to be able to write down the answer.

Let u = x − 2. Then du=dx and the first integral from the left hand side turns into
du

u
, which is lnu (provided u > 0). So the first integral on the left is ln(x − 2) (provided

x > 2). Likewise, the second is ln(x− 1) (provided x > 1). So∫
dx

(x− 1)(x − 2)
dx = ln(x− 2)− ln(x− 1) = ln

(
x− 2
x− 1

)

(provided x > 2).

By “expanding the fraction” we have turned the integral into one we know how to do.

Partial Fractions is a method for expanding fractions.

7.12. Example. Expand the fraction
1

(x− 1)(x− 3)
.

Solution The expansion will take the form

A

x− 1
+

B

x− 3

for some numbers A and B.
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This is obvious when you think about it. The process of combining fractions consists of
putting them over a common denominator and then tidying up. The common denominator
in this case has turned out to be (x− 1)(x − 3). So the components that went into it must
have been x− 1 and x− 3.

What we need to do now is find A and B.
To do this take the expression

1
(x− 1)(x− 3)

=
A

x− 1
+

B

x− 3

and clear fractions. This gives

1 = A(x− 3) + B(x− 1)

The quickest way to proceed for here is to note that this expression has to be true for all
values of x. That being so, it is true when x = 1 and when x = 3.

Putting x = 1 gives the equation 1 = (−2)A, and so A = −1
2
.

Putting x = 3 gives the equation 1 = 2B, and so B =
1
2
.

So these must be the values of A and B, and we have the expression

1
(x− 1)(x− 3)

= − 1
2(x− 1)

+
1

2(x− 3)

If we wished we could now go ahead and find the integral, since the routine has converted
it into the sum of two integrals each of which we can do easily.

7.4.1 The Partial Fractions Routine

The main routine will work on an integrand of the form
f(x)
g(x)

where f(x) and g(x) are poly-

nomials and where the degree of f(x) is less than the degree of g(x). So
x2 + 1

(x− 1)(x2 − 4)
is

OK, since we have degree 2 on the top and degree 3 on the bottom. However,
x3 + 1

(x− 1)(x2 − 4)
is not OK, since now we have degree 3 top and bottom.

Step 1:
This is only necessary when the condition on the degrees of f and g is not met, i.e. when

the degree of f is greater than or equal to that of g.
It won’t happen in questions I set, but you might need it in integrals which arise in other

courses.
If the degree of f is not less than that of g, divide f(x) by g(x) to get f(x) = g(x)h(x)+

r(x) where h(x) is the quotient and r(x) the remainder. Then divide through to get

f(x)
g(x)

= h(x) +
r(x)
g(x)

h(x) is a simple polynomial and so will be easy to integrate. The second component,
r(x)
g(x)

meets the condition about degrees and so can be carried forward to the main routine.



58 CHAPTER 7. TECHNIQUES OF INTEGRATION

7.13. Example.
∫

x2

x2 + 1
is an integral we have already met and which needs this prelim-

inary treatment.

x2 = (x2 + 1).1 + (−1)

So

x2

x2 + 1
= 1− 1

x2 + 1

Therefore ∫
x2

x2 + 1
=
∫

dx−
∫

1
x2 + 1

dx

Step 2:

Factorise g(x) as a product of linear and quadratic factors. This can always be done.
Again I shan’t ask you to do this, except in very simple cases such as the break up of (x2−a2)

as (x− a)(x + a).

Step 3:

Here again, I’ll spare you the general case. Look at the factorisation of g(x) and proceed

as follows:

1. For each linear factor which occurs only to the first power write down a term
A

x− a
.

2. For each linear factor which occurs to the power 2 write down a term
B

x− b
+

C

(x− b)2
.

3. For each quadratic factor which occurs only to the first power write down a term
Dx + E

x2 + cx + d
.

It can get more complicated than this, but it won’t in this course.
So, in the example we did earlier, g(x) was (x − 1)(x − 3). This is two linear factors,

each to the power 1. (x− 1) leads to the term
A

x− 1
and (x− 3) to the term

B

x− 3
.

7.14. Example.

x

(x− 1)(x + 1)2(x2 + x + 1)
=

A

x− 1
+

B

x + 1
+

C

(x + 1)2
+

Dx + E

x2 + x + 1

This time g(x) was the product of a linear factor to the power one, another linear factor
to the power two and a quadratic factor. We just worked through systematically, writing
down an appropriate term for each.

Clearly, we have to move through the alphabet as we do so, since there is no reason why
the various constants A,B, . . . should be equal.

Step 4:
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Having written down the appropriate break up, clear fractions by multiplying through
on both sides by g(x).

The job then is to calculate A,B, . . . .
There are two techniques you can use here:

1. putting in special values for x,

2. comparing coefficients for the various powers of x.

The first of these will not always get you all the way to the answer, but it will get you
off to a fast start. So begin with (1). The values of x to try are those from the linear factors
in g(x).

7.15. Example.
x + 1

(x− 1)2(x− 2)
Our rules say that

x + 1
(x− 1)2(x− 2)

=
A

x− 1
+

B

(x− 1)2
+

C

x− 2

for some constants A,B,C.
Clearing fractions gives us

x + 1 = A(x− 1)(x− 2) + B(x− 2) + C(x− 1)2

This is true for all x.
Putting x = 1 gives 2 = B(−1), and so B = −2.
Putting x = 2 gives 3 = C(1)2, and so C = 3.
That is the end of the fast progress from putting in special values. To complete the job

compare the coefficients of some suitable power of x.
On the lefthand side the coefficient of x2 is zero; on the right it is A + C. These must

be equal, and so we must have A + C = 0. We know that C = 3, and so conclude that
A = −3. Therefore we have

x + 1
(x− 1)2(x− 2)

= − 3
x− 1

− 2
(x− 1)2

+
3

x− 2

7.16. Example.
x2 + x + 4

(x− 2)(x2 + 2x + 2)
This time our rules give us the starting point

x2 + x + 4
x− 2)(x2 + 2x + 2)

=
A

x− 2
+

Bx + C

x2 + 2x + 2

Clearing fractions we get

x2 + x + 4 = A(x2 + 2x + 2) + (Bx + C)(x− 2)

Putting x = 2 gives 10 = 10A, and so A = 1.
For the rest we equate coefficients.
Coefficient of x2: 1 = A + B. So B = 0.
Constant term: 4 = 2A− 2C. So C = −1. Therefore

x2 + x + 4
(x− 2)(x2 + 2x + 2)

=
1

x− 2
− 1

x2 + 2x + 2
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7.4.2 The Integration Stage

All you ever handle at the integration stage in a partial fractions routine are:

1. Terms such as
k

x− a
where k and a are constants. These integrate as logs.

∫
k

x− a
dx = k ln(x− a) if x > a

= k ln(a− x) if x < a

You need to be aware of the two possibilities, because you will often be dealing with
a definite integral, and there the range of the function really does matter.

2. Terms such as
k

(x− a)2
where k and a are constants. Here there is no complication

at all. ∫
k

(x− a)2
dx = − k

x− a

With terms which have a quadratic on the bottom line, the best first step is to
“complete the square”, turning the quadratic into something of the form (x+ c)2 + d.
d will be positive if you have carried the factorisation of g(x) as far as you should
have. There are then two cases.

3. Terms such as
k

(x + c)2 + d
. Putting u = (x+ c) shows that these integrate as arctan

of something (see your handbook).

4. Terms such as
x + k

(x + c)2 + d
. Here you have to be slightly clever. Begin by setting

u = (x + c). (So x = u − c.) This turns the expression into something of the form
u + m

u2 + d
, and this you break up further as

u

u2 + d
+

m

u2 + d
. The first integrates as

1
2

ln(u2 + d) and the second as an arctan.

7.17. Example. I =
∫ 3

2

2x
(x2 + 1)(x + 1)

dx

Solution

2x
(x2 + 1)(x + 1)

=
x + 1
x2 + 1

− 1
x + 1
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Therefore

I =
∫ 3

2

x + 1
x2 + 1

dx−
∫ 3

2

1
x + 1

dx

=
∫ 3

2

x

x2 + 1
dx

∫ 3

2

1
x2 + 1

dx−
∫ 3

2

1
x + 1

dx

=
[
1
2

ln(x2 + 1)
]3

2

+ [arctan x]32 − [ln(x + 1)]32

=
1
2

ln(10)− 1
2

ln 5 + arctan 3− arctan 2− ln 4 + ln 3

= ln

(
3
√

2
4

)
+ arctan 3− arctan 2
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Chapter 8

Applications of Integration

8.1 Introduction

We have already used the definite integral to calculate areas bounded by curves. In this set
of lectures we are going to look at four more applications:

1. The calculation of certain volumes

2. The calculation of the lengths of curves

3. The location of centres of gravity of planar regions

4. The calculation of the surface areas of certain solids.

8.2 Volumes of Revolution

To calculate general volumes you need a more general version of calculus, one that handles
functions of more than one variable. For that you must wait until next year.

8.1. Q. An area is rotated about a line. Calculate the volume of the solid thus created.

I have not been subjecting you to proofs so far, because, as engineers, they aren’t some-
thing you are likely to need in the future. However, this time I am going to give you the
derivation of the formula we shall be using. And the reason for this is that the way of
thinking that produces the formula is, in the long term, more important than the formula
itself. For the purposes of the exam questions you will face the formula is sufficient; but for
the problems you will come across outside this course, the thought process is more valuable.

8.2.1 The Basic Case

The section of the curve y = f(x) between x = a and x = b is rotated about the x-axis.
The idea is to look at a small slice, δV , of the volume, lying between x and x + δx.
We calculate δV in terms of x and δx and then use integration to add up the slices and

thereby get the whole volume.
The small slice is a disc of radius y = f(x) and width δx. (This is not quite exact, but

it is a very good approximation.)
Therefore, its volume, δV = πy2δx.
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Dividing through by δx gives
δV

δx
= πy2

And as δx tends to zero this turns into
dV

dx
= πy2

And when we integrate both sides of this with respect to x we have

V =
∫ b

a
πy2 dx

8.1. Example. Find the volume that results when the portion of the curve y2 = 8x between
x = 0 and x = 2 is rotated about the x-axis.

The curve is as shown.

V =
∫ 2

0
πy2 dx =

∫ 2

0
8πx dx =

[
4πx2

]2
0

= 16π

The formula only works for rotations about the x-axis, but the thinking that produced
it allows you to handle rotations about any line you choose.
8.2. Example. Same piece of curve, but this time it is rotated about the line x = 2.
Solution Draw the picture showing a cross section taken down the axis of rotation and
consider a small slice at right angles to this axis. Calculate its volume and then integrate.

This time the small volume is a disc of radius (2− x) and thickness δy.
So

δV = π(2− x)2 dy

Therefore

δV

δy
= π(2− x)2

Therefore

dV

dy
= π(2− x)2

Therefore

V =
∫

π(2− x)2 dy

Now substitute for x so that the integrand is a function of y (necessary if we are going to

integrate with respect to y) and work out the limits of integration. x =
y2

8
and the limits

run from y = −4 to y = 4 (see diagram). Therefore

V =
∫ 4

−4
π

(
2− y2

8

)2

dy =
∫ 4

−4
π

(
4− y2

2
+

y4

64

)
dy = π

[
4y − y3

6
+

y5

320

]4

−4

=
256π
15

8.3. Example. The region between the curve y = x2 and the line y = x is rotated about
the x-axis. Find the resulting volume.
Method: The line and curve intersect when x = 0 and when x = 1. Calculate the volume
swept out by the curve, the volume swept out by the line and take the difference.
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8.2.2 Curves given parametrically

This doesn’t happen very often in volume problems. However, if it does, you use the same
method, but at the integration stage express the integrand in terms of the parameter and

substitute for dx or dy (as the case may be) by using dx =
dx

dt
dt (or the corresponding

expression for dy).
e.g. with the unit circle we have x = cos t, y = sin t etc.

8.3 Lengths of Curves

8.2. Q. Find the length of the path along the curve y = f(x) from x = a to x = b.

Again the routine is to consider the small length, δs between the points (x, y) and
(x + δx, y + δy)).

The length of the curve is approximately equal to that along the chord. So

δs2 ≈ δx2 + δy2 (*)

Therefore (
δs

δx

)2

≈ 1 +
(

δy

δx

)2

Therefore (
ds

dx

)2

= 1 +
(

dy

dx

)2

Therefore

(
ds

dx

)
=

√
1 +

(
dy

dx

)2

Integrating we get

s =
∫ b

a

√
1 +

(
dy

dx

)2

dx

Parameters are quite common in length problems. To handle such problems go back to
(∗) and divide through by (δt)2 rather than (δx)2. The result is the formula(

ds

dt

)2

=
(

dx

dt

)2

+
(

dy

dt

)2

and then

s =
∫ s

r

√(
dx

dt

)2

+
(

dy

dx

)2

dt
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where r and s are the values of t that give the limits of integration.

Because of the square root the integrals in these length calculations can be quite hard
unless the curve is carefully chose. This doesn’t make the method useless, but does mean
that you often have to resort to numerical integration.

8.4. Example. Calculate the length of the section from t = 0 to t = 2π of the curve which
is given parametrically by

x = a(t− sin t) , y = a(1− cos t)

(This curve is called the cycloid and is the path traced out by a point on a circle of radius
a as the circle rolls along a straight line.)

We are finding the length of one of the arches.

dx

dt
= a(1 − cos t) ,

dy

dt
= a sin t

Therefore (
dx

dt

)2

+
(

dy

dt

)2

= a2(1− 2 cos t + cos2 t) + a2 sin2 t

= a2(2− 2 cos t)

= 2a2(1− cos t)

Therefore

s =
∫ 2π

0

√
2a2(1− cos t) dt

The square root is an obvious problem, but we can get rid of it by using the trig formula

cos 2θ = 1− 2 sin2 θ

Rearranging this as 1− cos 2θ = 2 sin2 θ, and then putting 2θ = t we get

1− cos t = 2 sin2

(
t

2

)

Therefore

s =
∫ 2π

0

√
4a2 sin2

(
t

2

)
dt

=
∫ 2π

0
2a sin

(
t

2

)
dt

=
[
−4a cos

(
t

2

)]2π

0

= 8a
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8.5. Example. Find the length of the curve which is given parametrically by the equations

x = cos3 t , y = sin3 t

The picture is as shown.
The full curve is from t = 0 to t = 2π, but the obvious symmetry means that we can

just compute the length of the portion in the first quadrant and then multiply by 4 to get
the full length.

(Ans=6)

Exercise: Find the length of the curve which is given parametrically by the equations

x = 3cos t + cos 3t , y = 3 sin t + sin 3t

(Total length is four times that from t = 0 to t = π/2.
(The curve is the nephroid.)

8.4 Centroids

The geometrical centre of a body is known as its centroid. If the body has uniform density,
the centroid is also the centre of gravity.

We can locate the centroids of planar areas using integration. The approach is similar
to the one used in the volumes of revolution — that is we consider small strips, and then
use integration to add them up.

The moment exerted by a body is the same as that that would be exerted were the
whole mass to be concentrated at the centre of gravity.

What we shall do is calculate this moment in two ways and thereby locate the centre
of gravity.

In these problems the planar area is to be thought of as a thin metal plate of uniform
density. So the mass is proportional to the area. We already know how to calculate areas,
and so we can get the total mass.

8.4.1 Calculating Mx, the moment with respect to the x-axis.

The top edge of the area is the curve y = f(x) and the bottom edge is y = g(x). The limits
are x = a and x = b.

As is usual, we begin by looking at a thin strip, as shown.
The strip lies between x and x + δx.
Let the contribution of this strip to Mx be δMx.
The strip may be thought of as a rectangle.
Its top edge is at height f(x) and its bottom edge at g(x). So the height of the rectangle

is f(x)− g(x).
The width is δx, and so the area (=“the mass”) is (f(x)− g(x))δx.
In calculating δMx we think of this mass as being located at the rectangle’s centre of

gravity.
The centre of gravity of a rectangle is half way between the bottom and the top. The

top is at f(x), and the bottom at g(x). Halfway between the two is
f(x) + g(x)

2
. The
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moment of the strip about the x-axis is the mass times the distance of the c. of g. from
the x-axis.

Therefore,

δMx =
1
2
(f(x) + g(x))(f(x) − g(x))δx

Therefore

δMx

δx
=

1
2
(f(x) + g(x))(f(x) − g(x))

and so

dMx

dx
= 12(f(x) + g(x))(f(x) − g(x))

Therefore

Mx =
∫ b

a

1
2
(f(x) + g(x))(f(x) − g(x)) dx (1)

8.4.2 Calculating My, the moment with respect to the y-axis.

The distance of the centre of gravity of the rectangle from the y-axis is (to a first approx-
imation) x. Therefore

δMy = x(f(x)− g(x))δx

Therefore

My =
∫ b

a
x(f(x)− g(x)) dx (2)

8.4.3 Special Case

If the lower boundary of the region is the x-axis, we have g(x) = 0, and a consequent
simplification of the formulas, which become

Mx =
∫ b

a

1
2
y2 dx (3)

My =
∫ b

a
xy dx (4)

(writing y for f(x).)



8.5. SURFACES OF REVOLUTION 69

8.4.4 The Centroid

We now have expressions for Mx and My. To get the coordinates of the centroid we use the
fact that these moments are equal to the ones you would get by concentrating the whole
mass at the centre of gravity.

Let the centre of gravity be at (x̄, ȳ), and let the area of the region be A.
The distance of the centre of gravity from the x-axis is ȳ, and so the moment about the

x-axis is Aȳ. Similarly that about the y-axis is Ax̄. Therefore we have the formulas

Ax̄ = My , Aȳ = Mx

We know how to calculate A, Mx and My, and so using these formulas we can calculate x̄
and ȳ.

8.6. Example. Find the centroid of the region bounded by y =
√

x, the x-axis and the line
x = 1.

Solution Calculate A, Mx, My and then put them into the formulas.

A =
∫ 1

0

√
x dx =

[
2
3
x3/2

]1

0

=
2
3

For the two moments we can use the simplified formulas, since the lower boundary is the
x-axis.

Mx =
∫ 1

0

1
2
(
√

x)2 dx =
∫ 1

0

1
2
x dx =

[
1
4
x2

]1

0

=
1
4

My =
∫ 1

0
x
√

x dx =
∫ 1

0
x3/2 dx =

[
2
5
x5/2

]1

0

=
2
5

Therefore
x̄ =

My

A
=

2
5

3
2

=
3
5

and
ȳ =

Mx

A
=

1
4

3
2

=
3
8

Therefore the centroid is at
(

3
5
,
3
8

)
.

8.7. Example. Find the centroid of the region bounded by the curve y = x2 and the line
y = x.

8.8. Remark. Non-uniform density. Into the calculation of the three integrals you have to
incorporate a density function σ(x, y). The principle remains the same, but to handle the
integrals you now need the calculus of severable variables.

8.5 Surfaces of Revolution

This time we rotate a section of a curve about a line and consider the surface area of the
solid created.
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e.g. if we take the circle x2 + y2 = r2 and rotate it about the x-axis, we get a sphere.
The calculation would give us the surface area of that sphere.

As always, the plan is to look at a small section and then to integrate to get the whole
thing.

The section of the curve y = f(x) between x = a and x = b is rotated about the x-axis.
Consider the small segment lying between x and x + δx.
The rotation of the small segment produces a ring with a curved edge and radius y

(approximately). To get the surface area of the ring we multiply the distance along the
curved edge by 2π times the radius. (2πr being the circumference of a circle of radius r.)

We know from our earlier work on curve length that the approximate distance along
the curved edge is given by

δs =
√

δx2 + δy2

So the small element, δA, of surface area is given by

δA ≈ 2πyδs

≈ 2πy
√

δx2 + δy2

Therefore

δA

δx
≈ 2πy

√
1 +

(
δy

δx

)2

and so

dA

dx
= 2πy

√
1 +

(
dy

dx

)2

Integrating we get

A =
∫ b

a
2πy

√
1 +

(
dy

dx

)2

dx

As in the problem of curve length we sometimes have to deal with curves given by para-
meters. This time the formula is

A =
∫ b

a
2πy

√(
dx

dt

)2

+
(

dy

dt

)2

dt

This is the most complicated-looking of the formulas we have developed in this section.
However, appearances deceive. In practice, the integrals you get are often easier to deal
with than the length ones: that extra y term seems to help, often making for an integration
by substitution.

8.9. Example. The circle x2 + y2 = r2 is rotated about the x-axis. Calculate the surface
area of the resulting sphere.
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Solution We could express y as
√

r2 − x2 and differentiate, but this is another case where
implicit differentiation is easier.

2x + 2y
dy

dx
= 0 and so

dy

dx
= −x

y

The limits of integration are r and −r. Therefore

A =
∫ r

−r
2πy

√
1 +

x2

y2
dx

=
∫ r

−r
2π
√

y2 + x2 dx

=
∫ r

−r
2π
√

r2 dx

=
∫ r

−r
2πr dx

= [2πrx]r−r

= 4πr2

So the surface area of a sphere of radius r is 4πr2.

8.10. Example. A parabola is given parametrically by the equations x = 5t2, y = 10t. The
curve is as shown.

The section that runs from t = 0 to t = 2 is rotated about the x-axis. Calculate the
surface area of the resulting solid.

Solution
dx

dt
= 10t ,

dy

dt
= 10

Therefore (
dx

dt

)2

+
(

dy

dt

)2

= 100(t2 + 1)

Therefore

A =
∫ 2

0
2π(10t)

√
100(t2 + 1) dt

=
∫ 2

0
200πt

√
t2 + 1 dt

This illustrates how the extra y in the integral helps. Had it not been there we should
have had to integrate

√
t2 + 1, and that involves using the substitution t = sinh θ (see the

tutorial sheet Integration 2). With it there we can use the much more straightforward
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substitution u = t2 + 1. With this we have du = 2tdt and we get

A =
∫ 2

0
200πt

√
t2 + 1 dt

=
∫ t=2

t=0
100π

√
u du

= 100π
[
2
3
u3/2

]t=2

t=0

= 100π
[
2
3
u3/2

]u=5

u=1

=
200π

3

(
5
√

5− 1
)



Chapter 9

Reduction Formulas

9.1 Reduction Formulas

This is refinement of the technique of integration by parts. It is a labour saving device
designed to cope with the situation where a simple-minded approach would leave us integ-
rating by parts many times over before reaching an answer.

9.1. Example. Evaluate
∫ 1
0 x6ex dx.

Solution x6 is a function that simplifies on differentiation, ex is a function we can integrate
in our heads, and so we use integration by parts.

Let u = ex and v = x6. Then
∫

u dx = ex and v′ = 6x5. And so

∫ 1

0
=
[
x6ex

]1
0
−
∫ 1

0
6x5ex dx

= e− 6
∫ 1

0
x5ex dx

It is an improvement, since we have an integral involving a lower power of x, but we are
still a long way from the answer. What we must do next is use parts again. This will get
us down to

∫ 1
0 x4ex dx. Then again to get down to x3ex. And so on.

We shall reach an answer, but it is going to take time, time spent doing a lot of repetitive
processes. What a reduction formula does is take the work out of the repeats. Instead of
doing lots of integrations by parts, we shall do one, with an n in place of the 6. This will
give us a formula which we can then use over and over with different values for n.

Let n be a positive integer, and let

In =
∫ 1

0
xnex dx

Integrate by parts with u = ex and v = xn. The result is

In = [xnex]10 −
∫

nxn−1ex dx

= e− n

∫ n

0
xn−1ex dx

73
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and so

In = e− nIn−1 (*)

This is what is meant by a reduction formula. It gives In in terms of a simpler integral
of the same type (In−1).

Now let us use it on our earlier problem, which was to calculate I6.
(*) with n = 6 gives I6 = e− 6I5. Now use it again with n = 5 to get I5 = e− 5I4 and

substitute to get

I6 = e− 6I5 = e− 6(e− 5I4) = −5e + 30I4

Now use the formula again, but with n = 4. Substitute once more, and then keep going in
the same sort of way.

I6 = −5e + 30I4

= −5e + 30(e − 4I3)
= 25e− 120I3

= 25e− 120(e − 3I2)
= −95e + 360I2

= −95e + 360(e − 2I1)
= 265e − 720I1

= 265e − 720(e − I0)

At that point we have to pause, because our formula was only valid for n > 0 and we are
now down to n = 0. However, I0 is an integral we need no help with. I0 =

∫ 1
0 ex dx = e−1.

Therefore

I6 = 265e − 720e + 720(e − 1) = 265e − 720

9.2. Example. Let In =
∫

sinn x dx where n is an integer ≥ 2. Find a reduction formula
for In, and then use it to calculate

∫ π/2
0 sin6 x dx.

Solution With all these questions we use integration by parts, and the aim is to recover an
integral of the same shape but with a smaller n.

The largest section of the integrand that we can integrate in our heads is sinx. So set
u = sin x and v = sinn−1 x (the bit that is left after we have removed u).

∫
u dx = − cos x ,

dv

dx
= (n− 1) sinn−2 x cos x
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Therefore

In = − sinn−1 cos x−
∫

(n− 1) sinn−2 x cos x(− cos x) dx

= − sinn−1 cos x + (n− 1)
∫

sinn−2 x cos2 x dx

= − sinn−1 cos x + (n− 1)
∫

sinn−2 x(1− sin2 x) dx

= − sinn−1 cos x + (n− 1)
∫ (

sinn−2 x− sinn x
)

dx

= − sinn−1 cos x + (n− 1)
[∫

sinn−2 x dx−
∫

sinn x dx

]
= − sinn−1 x cos x + (n− 1) [In−2 − In]

Taking all the In terms on to the left we get

nIn = − sinn−1 x cos x + (n− 1)In−2

To use this on a definite integral we just put in the limits.
So if we had that In =

∫ π/2
0 sinn x dx, the formula would become

nIn =
[− sinn−1 x cos x

]π/2

0
+ (n− 1)In−2

= (n− 1)In−2 provided n ≥ 2

Repeated application of this formula will bring you down to I1 =
∫

sin x dx or I0 =
∫

dx,
both of which you can do without difficulty.

For example, with the definite integral and n = 6, we have

I6 =
5
6
I4 =

5
6

3
4
I2 =

5
6

3
4

1
2
I0

and since
∫ π/2

0
dx =

π

2
, this leads to

I6 =
5
6

3
4

1
2
I0 =

5
6

3
4

1
2

π

2
=

5π
32

Reduction formulas for
∫

cosn x dx and
∫

xneax dx are to be found in your handbook. Others
that are sometimes useful are∫

sinm x cosn x dx =
sinm+1 x cosn−1 x

m + n
+

n− 1
m + n

∫
sinm x cosn−2 x dx

and ∫
sinm x cosn x dx = −sinm−1 x cosn+1 x

m + n
+

m− 1
m + n

∫
sinm−2 x cosn x dx

Faced with an integral such as
∫

sin8 x cos4 x dx you use the first of these to bring down the
powers of cos x and the second to bring down those of sin x.
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Chapter 10

Complex Numbers

10.1 Introduction

You are familiar with the following situation with regard to quadratic equations:

The equation x2 = 1 has two roots x = 1 and x = −1.
The equation x2 = −1 has no roots because you cannot take the square root

of a negative number.

Long ago mathematicians decided that this was too restrictive. They did not like the
idea of an equation having no solutions — so they invented them. They proved to be very
useful, even in practical subjects like engineering.

Consider the general quadratic equation ax2 + bx + c = 0 where a 6= 0. The usual
formula. obtained by “completing the square” gives the solutions

x =
−b±√b2 − 4ac

2a
.

If b2 ≥ 4ac we are happy. If b2 < 4ac then the number under the square root is negative
and you would say that the equation has no solutions. In this case we can write b2− 4ac =
(−1)(4ac − b2) and 4ac− b2 > 0. So, in an obvious formal sense,

x =
−b±√−1

√
4ac− b2

2a
,

and now the only ‘meaningless’ part of the whole formula is
√−1.

So we might say that any quadratic equation either has “real” roots in the usual sense
or else has roots of the form p + q

√−1, where p and q belong to the real number system R.
The expressions p + q

√−1 do not make any sense as real numbers, but there is nothing
to stop us from playing around with them as symbols. In fact, playing around with them
proves to be very useful for applications to problems in differential equations, electrical
circuit theory and fluid mechanics.

Although we don’t discuss it formally here, there is a number system larger than R

containing a special number j such that j2 = −1, called the complex numbers, and written
C . This number system can be put on just as proper or correct a foundation as R, and so,

77
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although we introduce it as a device to do calculations, there is no logical objection to its
use. Informally, you can think of j =

√−1 but remember that (−j)2 = −1 too.
We call these numbers complex numbers; the special number j is called an imaginary

number, even though j is just as “real” as the real numbers and complex numbers are
probably simpler in many ways than real numbers.

Engineering usage is different from that of mathematicians or physicists. One of the
important early uses in engineering is in connection with electrical circuits, and in partic-
ular, in calculating current flows. The symbol i is reserved for current, and so j is used for√−1, while mathematicians use i for this imaginary number.

For manipulations, remember that

j2 = −1

10.1. Definition. A complex number is any expression of the form x+ jy, where x and
y are ordinary real numbers. The collection of all complex numbers is denoted by C .

Note that all real numbers are complex numbers as well: x = x + 0j.

10.2 The Arithmetic of Complex Numbers

Using the ‘rule’ j2 = −1 we can build up an ‘arithmetic’ of complex numbers which is
very similar to that of ordinary numbers. In this Section we define what we mean by the
sum, difference, product and ratio of complex numbers. All the definitions are derived by
assuming that the ordinary rules of arithmetic work with the addition that j2 = −1.

In what follows let a, b, c, d are ordinary real number, and let z = a+ jb and w = c+ jd
be two complex numbers.

z = w iff a = c and b = d (Equality)
z + w = (a + c) + j(b + d) (Addition)
z − w = (a− c) + j(b− d) (Subtraction)

zw = (ac− bd) + j(bc + ad) (Multiplication)
z

w
=

(ac + bd) + j(bc − ad)
c2 + d2

(Division)

Equality, Addition and Subtraction are fairly obvious. Note that the definition of equal-
ity enables us to ‘equate real parts’ and ‘equate imaginary parts’ when we have two complex
numbers that are equal. The definitions of multiplication and division are more complic-
ated. They come about as follows.

Multiplication Multiply out (a + jb)(c + jd) just as you usually would

zw = (a + jb)(c + jd) = ac + jbc + ajd + j2bd.

Now add in the information that j2 = −1 and get

zw = ac + jbc + jad− bd = (ac− bd) + j(bc + ad),

as given above.
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Division This is even more complicated. Start by noting that

(c + jd)(c − jd) = c2 − j2d2 = c2 + d2.

Now use this to rearrange the quotient as follows:

z

w
=

a + jb

c + jd
=

(a + jb)(c− jd)
(c + jd)(c − jd)

=
(ac + bd) + j(bc − ad)

c2 + d2
,

again as given above.

This arithmetic works in the same way as ordinary arithmetic. You use the usual rules.
It is not really worth remembering the ‘formula’ for the product and quotient. It is

better to calculate them in the same way that I derived the formulae.
10.2. Example. If z = 2 + 3j and w = 1− 2j what are z + w, z − w, zw and z/w?
Solution We compute using these rules.

z + w = (2 + 3j) + (1− 2j) = (2 + 1) + (3− 2)j = 3 + j.

z −w = (2 + 3j) − (1− 2j) = (2− 1) + (3 + 2)j = 1 + 5j.

zw = (2 + 3j)(1 − 2j) = 2− 4j + 3j − 6j2 = 2− 4j + 3j + 6 = 8− j.

z

w
=

2 + 3j
1− 2j

=
(2 + 3j)(1 + 2j)
(1− 2j)(1 + 2j)

=
2 + 3j + 4j − 6

1 + 4
=
−4 + 7j

5
= −4

5
+

7
5
j.

10.3. Example. If z = 5 − 6j, w = 2 + 7j and x = −1 − j what are 2z + w − x, z2 − x2,
xzw, 1/z, z(w − 2x)?1

Solution Again computing, we have:

2z + w − x = 2(5− 6j) + (2 + 7j) − (−1− j) = 10− 12j + 2 + 7j + 1 + j = 13− 4j;

z2 − x2 = (5− 6j)(5 − 6j)− (−1− j)(−1 − j),
= 25− 60j − 36− (1− 1 + 2j) = −11− 62j;

xzw = (−1− j)(5 − 6j)(2 + 7j) = (−1− j)(10 − 12j + 35j + 42),
= (−1− j)(52 + 23j) = −52− 52j − 23j + 23 = −29− 75j;

1
z

=
5 + 6j

(5− 6j)(5 + 6j)
=

5 + 6j
25 + 36

=
5 + 6j

61
;

z(w − 2x) = (5− 6j)(2 + 7j + 2 + 2j) = (5− 6j)(4 + 9j),
= 20− 24j + 45j + 54 = 74 + 21j.

10.4. Example. What are the roots of the quadratics x2 + x + 1 = 0, x2 − 2x + 3 = 0?
Solution Using the usual formula, we get for roots as follows:

−1±√1− 4
2

=
−1± j

√
3

2
and

2±√4− 12
2

=
2± j

√
8

2
= 1± j

√
2.

1You see here the difficulty of trying to reserve particular symbols for particular meanings. Usually x
is a real number, but here we have no need of symbols for real numbers, but need three different ones for
complex numbers. So x gets temporarily used as a complex number.
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Powers of j. What are the powers of j? Starting from j2 = −1 we get

j2 = −1, j3 = −j, j4 = 1, j5 = j, . . .

The powers go in a cycle of length 4.

10.2.1 Square Roots

The square root of a complex number z is any complex number w such that w2 = z. Given
a particular z, it is not too hard to calculate the square roots of z.
10.5. Example. Let z = 1− 5j; calculate the square roots of z.
Solution Write w = a + jb where a and b are real. Then

1− 5j = (a + jb)(a + jb) = (a2 − b2) + 2jab.

So our problem reduces to that of solving two simultaneous real equations;

a2 − b2 = 1 and 2ab = −5

The second one gives b = −5/(2a). Put this into the first and get

a2 − 25
4a2

= 1 or 4a4 − 4a2 − 25 = 0

This looks a bit worrying because it is an equation of degree 4. The trick is to notice that
it is actually just a quadratic for a2. So, by the usual formula for quadratics,

a2 =
4±√16 + 400

8
=

1±√26
2

Now a is definitely a real number, so its square cannot be negative. So the only possibility
is that

a2 =
1
2
(1 +

√
26) and a = ±

√
1 +

√
26

2
This gives us two possible values for a. The corresponding values of b are then obtained
from b = −5/(2a). This gives two values for w, differing by a factor of −1.

10.2.2 Complex Conjugates

Let z = x+ jy be a complex number. We say that z is real if y = 0, and purely imaginary if
x = 0. The real number x is called the real part of z and written x = <z. The real number
y is called the imaginary part of z and written y = =z.

The complex conjugate of the complex number z = x + jy is the complex number
z̄ = x− jy. Thus z and z̄ have the same real part, while z + z̄ has 0 as its imaginary part.
Note that

zz̄ = x2 + y2, z + z̄ = 2x, z − z̄ = 2jy.

10.6. Example. Let z1 = 2 + 3j, z2 = 4j and z3 = −j. Give the real and imaginary parts,
and the complex conjugates of z1, z2 and z3.
Solution If z1 = 2 + 3j then z1 has real part 2, imaginary part 3 and complex conjugate
z̄1 = 2− 3j.

If z2 = 4j then z2 is purely imaginary and z̄2 = −4j.
If z3 = −j then z3 is purely imaginary and z̄3 = j.
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10.3 The Argand Diagram

You are familiar with the representation of real numbers as points along a line:

0 1 2.45-1.29

Figure 10.1: The real line.

A complex number z = x + jy is specified by two real numbers x and y. So it is often
useful to think of a complex number as being represented by the point in a plane with
Cartesian coordinates (x, y). This representation is called the Argand diagram or the
complex plane.

2 + 1j

Figure 10.2: The Argand diagram or complex plane.

10.4 Modulus and Argument

Thinking in terms of the Argand diagram we can specify the position of the complex number
z = x + jy on the plane by giving the polar coordinates of the point (x, y).

r

θ

z = x + jy

Figure 10.3: The modulus - argument representation of z.

The polar coordinate r is the distance from O to P and is called the modulus of the
complex number z and written as |z|.

r = |z| =
√

x2 + y2 =
√

zz̄

The polar coordinate θ is called an argument of z. If we take θ in the range −π < θ ≤ π
then we call it the (principal) argument of z and we denote it by arg(z). Note that any
argument of z differs from arg(z) by an integer multiple of 2π (working in radians) or of
360◦ (working in degrees)2.

2You are reminded that there is a very good reason for working in radians: the derivative of sin x is cos x



82 CHAPTER 10. COMPLEX NUMBERS

Since x = r cos θ and y = r sin θ we can write z in terms of its modulus and argument
as

z = r(cos θ + j sin θ) r ≥ 0, −π < θ ≤ π.

This is called writing z in polar form or modulus - argument form. Any non-zero complex
number can be written in this form. The point 0 is a slightly special case, it has r = 0 but
the angle θ is not defined.
10.7. Example. Give the real and imaginary parts, complex conjugate and the modulus
and argument of each of the complex numbers z = 1 + j, z = 1 − j, z = −4j, z = −3,
z = −1− 3j.
Solution The given complex numbers are plotted in the complex plane in Fig 10.4.

z = 1 + j has real part 1, imaginary part 1, complex conjugate z̄ = 1− j and modulus
|z| = √

1 + 1 =
√

2. The argument of z is π/4.

z =
√

2(cos
π

4
+ j sin

π

4
).

z = 1− j has real part 1, imaginary part −1, complex conjugate z̄ = 1+ j and modulus
|z| = √

2. The argument of z is, according to our conventions, −π/4.

z =
√

2(cos
π

4
− j sin

π

4
).

-1-3j

-4j

1-j

1+j
-3

Figure 10.4: Plotting points: Example 10.7.

Clearly z = −4j has real part 0,
imaginary part −4, complex con-
jugate z̄ = 4j and modulus |z| =√

0 + (−4)2 = 4. The argument of
z is −π/2, and

z = 4
(
cos−π

2
+ j sin−π

2

)
.

z = −3 has real part −3, ima-
ginary part 0, complex conjugate
z̄ = −3 = z and modulus |z| = 3.
The argument of z is, according to
our conventions, π so z = 3(cos π +
j sin π).

z = −1 − 3j has real part −1,
imaginary part −3, complex conjugate z̄ = −1 + 3j and modulus |z| =

√
1 + 9 =

√
10.

The argument of z has to be found with the aid of a calculator. It lies in the range
−π < θ < −π/2 (third quadrant) and has value

θ = arctan
−3
−1

− π = −1.8925.

It is perhaps of interest that this problem with arctan is quite common; so common that
many computer languages, starting with Fortran, have two version of the function, typically
called atan and atan2. The first one genuinely computes the inverse tangent function, and
returns an angle between −π/2 and π/2; the second function is the “proper” one in our
context andit takes the two arguments need to compute the angle to within 2π.

only when the angle is measured in radians; if degrees are used there is a constant π/180 in the formula:
there is a similar reason for measuring arguments in radians.
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10.5 Products

Let z = r(cos θ + j sin θ) and w = s(cos ϕ + j sin ϕ) be two complex numbers in polar form.
Thus r = |z| and θ = arg(z), while s = |w| and ϕ = arg(w).

Consider the product of z and w:

zw = rs(cos θ + j sin θ)(cos ϕ + j sin ϕ)
= rs((cos θ cosϕ− sin θ sin ϕ) + j(sin θ cos ϕ + cos θ sinϕ))
= rs(cos(θ + ϕ) + j sin(θ + ϕ))

This tells us that the modulus of zw is just the product of the moduli of z and w:

|zw| = |z| |w|

and, provided we adjust the angles to the correct range by adding or subtracting multiples
of 2π, the argument of the product is the sum of the arguments:

arg(zw) = arg(z) + arg(w) (modulo 2π).

For example, if z has argument 120◦ and w has argument 150◦ then an argument of zw is
120 + 150 = 270, which is not in the right range, so we subtract 360◦ and get the principal
argument, which is −90◦ (or −π/2 radians).

Similarly, for w 6= 0, ∣∣∣ z
w

∣∣∣ =
|z|
|w|

and
arg
( z

w

)
= arg(z)− arg(w) (modulo 2π).

10.6 De Moivre’s Theorem

If we repeat the process of the above section over and over again we can show that if z 6= 0
and n is a positive whole number then |zn| = |z|n and n arg(z) is an argument of zn.

Since
∣∣∣∣1z
∣∣∣∣ =

1
|z| and arg(1/z) = − arg(z) we also get the same results if n is a negative

integer. So we have the above formulae for all integer values of n (n = 0 is easy — check).
The result is often put in the following useful form, which is known as de Moivre’s

Theorem. If n is any whole number then

z = r(cos θ + j sin θ) ⇒ zn = rn(cos nθ + j sin nθ)

Let me tell you of one other notation at this point, which looks a bit obscure at the
moment but which you will meet a lot in later years:

ejθ = cos θ + j sin θ

So
z = r(cos θ + j sin θ) = rejθ and zn = rnenjθ.
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10.7 The Roots of Unity

The problem here is to solve the equation zn = 1, where n is usually a positive whole
number.

Write both sides of the equation in polar form. Let z have polar form

z = r(cos θ + j sin θ) so that zn = rn(cos nθ + j sin nθ)

We know that
1 = 1(cos 0 + j sin 0)

So our equation becomes

rn(cos nθ + j sin nθ) = 1(cos 0 + j sin 0)

Now two complex numbers in standard polar form are equal if and only if their moduli and
arguments are equal. In the case of the argument this statement has to be handled with
care. It means ‘are equal if reduced to the proper range’. So, for example, 10◦ and 370◦

count as equal from this point of view.
So we can say that rn = 1 and that nθ and 0 are equal up to the addition of some

multiple of 2π radians.
rn = 1 nθ = 0 + 2kπ

where k is some whole number.
Since r is real and positive, the only possibility for r is r = 1.
The other equation gives us

θ = 0 + 2π
k

n
.

This, in principle, gives us infinitely many answers! One for each possible whole number k.
But not all the answers are different. Remember that changing the angle by 2π does not
change the number z.

The distinct solutions, of which there are n, are given by r = 1 and

θ = 2π
k

n
k = 0, 1, 2, 3, . . . , n− 1

and we can write these solutions as

zk = cos θk + j sin θk where θk = 2π
k

n
k = 0, 1, 2, . . . n− 1

That looks rather complicated. It becomes a lot simpler if you think in terms of the
Argand diagram. All the solutions have modulus 1 and so lie on the circle of radius 1
centred at the origin. The solution with k = 1 is just z = 1. The other solutions are just
n − 1 other points equally spaced round this circle, with angle 2π/n between one and the
next. This is illustrated in Fig 10.5 in fact for the case n = 17.

Let’s look at some specific examples. The cube roots of unity are the solutions to z3 = 1.
There are three of them and they are

z0 = 1, z1 = cos 2π/3 + j sin 2π/3, z2 = cos 4π/3 + j sin 4π/3
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Figure 10.5: The nth roots of 1. Figure 10.6: The three cube roots of 1.

Note that z2 = z̄1, z2 = z2
1 and 1 + z1 + z2 = 0. the roots are shown in Fig 10.6.

Similarly the fourth roots of unity are the solutions of z4 = 1 and these are

z = 1, z = j, z = −1, z = −j.

A picture for n = 4 together with those for n = 5 and n = 6 is given in Fig 10.7

Figure 10.7: The nth roots of 1 for n = 4, 5, 6.

We can do other equations like this in much the same way.

10.8. Example. Find the solutions of the equation z4 = j.

Solution Put z = r(cos θ + j sin θ). Then z4 = r4(cos 4θ + j sin 4θ). We know that
j = 1(cos π/2 + j sin π/2. So our equation becomes

r4(cos 4θ + j sin 4θ) = 1(cos π/2 + j sinπ/2)

Therefore
r = 1 and 4θ =

π

2
+ 2kπ or θ =

π

8
+ k

π

2
There are 4 distinct solutions, given by k = 0, 1, 2, 3. They form a square on the unit circle.

10.8 Polynomials

We have learned how to manipulate complex numbers, and suggested that they will prove
valuable in Engineering calculations. The original motivation for introducing them was to
give the equation x2 = −1 two roots, namely j and −j, rather than it having no roots. It
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turns out that this is all we have to do to ensure that every polynomial has the right number
of roots. We now discuss this, and a number of other basic results about polynomials, that
are quite useful to know.

A polynomial in x is a function of the form

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

where the a’s are (real or complex) numbers and an 6= 0. For example

p(x) = x3 − 2x + 4, q(t) = 5t8 − t4 + 6t3 − 1.

The highest power in the polynomial is called the degree of the polynomial. The above
examples have degrees 3 and 8.

A number a (real or complex) is said to be a root of the polynomial p(x) if p(a) = 0.
Thus x = 1 is a root of x2 − 2x + 1.

The first important result about polynomials is that a number a (real or complex) is a
root of the polynomial p(x) if and only if (x − a) is a factor of p(x), in the sense that we
can write p(x) as

p(x) = (x− a)q(x)

where q(x) is another polynomial. This result is often called the remainder theorem . For
example, x = 2 is a root of p(x) = x3 + x2 − 7x + 2 and it turns out that

p(x) = (x− 2)(x2 + 3x− 1).

Note that necessarily the polynomial q has degree one less than the degree of p.
It may be the case that you can pull more than one factor of (x−a) out of the polynomial.

For example, 2 is a root of p(x) = x3 − x2 − 8x + 12 and it turns out that

p(x) = (x− 2)(x − 2)(x + 3).

In such cases a is said to be a multiple root of p(x). The multiplicity of the root is the
number of factors (x − a) that you can take out. In the above example, 2 is a root of
multiplicity 2, or a double root. A root is called a simple root if it produces only one factor.
Multiple roots are a considerable pain in the neck in many applications, but they have the
advantage that the Fundamental Theorem of Algebra, Theorem 10.9 takes a simple form.

There is a simple test for multiplicity. Suppose a is a root of p(x), so that p(a) = 0. If,
in addition, p′(a) = 0 (derivative) then a is a multiple root. To take the above example:
p(x) = x3−x2−8x+12. We have p′(x) = 3x2−2x−8 and p(2) = 0 and we have p′(2) = 0,
so we know that 2 is a multiple root.

Let me prove this result. Since a is a root of p(x), we can write p(x) = (x − a)q(x)
where q(x) is another polynomial. By the product rule,

p′(x) = (x− a)q′(x) + q(x).

So p′(a) = 0.q′(a) + q(a) = q(a). Since p′(a) = 0 we have q(a) = 0. But this means that
q(x) has (x− a) as a factor — and hence that p(x) has (x− a) as a factor more than once.

You should check the converse: if a is a multiple root of p(x) (so that p(x) = (x−a)2q(x)
for some polynomial q(x)) then p(a) = p′(a) = 0.

The next result is fundamental. I am not going to attempt to prove it in detail; it
requires some rather fancy mathematics!.
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10.9. Theorem (Fundamental Theorem of Algebra). Let p be any polynomial of de-
gree n. Then p can be factored into a product of a constant and n factors of the form (x−a),
where a may be real or complex.

Also, the factorisation is unique; you cannot find two essentially different factorisations
for the same polynomial. The factors need not all be different because of multiple roots.
The fact that there cannot be more than n such factors is fairly obvious, since we would
have the wrong degree. What is not at all obvious is that we have all the factors that we
want. Note that this result does not tell you how to find these factors; just that they must
be there!

The result is often stated loosely as: a polynomial of degree n must have exactly n roots.
You have to allow complex roots or the theorem is not true. For example p(x) = x2 + 1
has no real roots at all. Its roots are x = ±j and it factorises as p(x) = (x− j)(x + j).

We have already seen this result in action when solving equations earlier in the Chapter.
I told you then that you can take it for granted that an equation like z7 = 2 + j will have
exactly 7 solutions. In fact, if w 6= 0 then p(z) = zn − w (n ≥ 1) always has exactly n
distinct roots because we know that it must have n roots in all and it cannot have any
multiple roots because p′(z) = nzn−1 has only 0 as a root and 0 is not a root of p(z).

There is one other result about roots of polynomials that is worth knowing. Suppose we
have a polynomial with real, as opposed to complex, coefficients. Suppose that the complex
number z is a root of the polynomial. Then the complex conjugate z̄ is also a root. So
you get two roots for the price of one. You can see this in the example of the previous
paragraph. x2 + 1 has j as a root, so it automatically must have −j as a root as well.

10.10. Example. Let p(z) = z4 − 4z3 + 9z2 − 16z + 20. Given that 2 + j is a root, express
p(z) as a product of real quadratic factors and list all four roots, drawing attention to any
conjugate pairs.

Solution Since p has real coefficients, and complex roots occur in pairs consisting of a root
and its complex conjugate. Given that 2 + j is a root, it follows that 2− j must also be a
root, and so the quadratic

(z − (2 + j))(z − (2− j)) = z2 − 4z + 5

must be a factor. Dividing the given polynomial by this factor gives

p(z) = z4 − 4z3 + 9z2 − 16z + 20 = (z2 − 4z + 5)(z2 + 4).

The roots of z2 + 4 are 2j and its complex conjugate, −2j. Thus the given polynomial, of
degree four, has two pairs of complex conjugate roots.

Having seen how useful the result can be in practice, let me give a proof, because it is
really a very simple manipulation with complex conjugates.

10.11. Proposition. Let P be a polynomial with real coefficients, and assume that p(z0) =
0. Then p(z̄0) = 0.

Proof. Let

p(z) = a0 + a1z + a2z
2 + · · ·+ anzn
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and assume that a0, a1, . . . an ∈ R. Thus p is a polynomial with real coefficients. Let
p(z0) = 0, so that

a0 + a1z0 + a2z
2
0 + · · · + anzn

0 = 0.

We have

p(z̄0) = a0 + a1z̄0 + a2z̄
2
0 + · · ·+ anz̄n

0

and since each coefficient is real,

= ā0 + ā1z̄0 + ā2z̄
2
0 + · · ·+ ānz̄n

0

= ¯p(z0) = 0 since z0 is a root of p.

Thus z̄0 is a root of p as claimed.

Of course if z0 ∈ R, the result tells us nothing, since in that case z0 = z̄0. But as we
saw in the example, if we have found one complex root, we can immediately get hold of
another one; the complex roots come in pairs.

10.12. Example. Express z5 − 1 as a product of real linear and quadratic factors.

Solution We rely on our knowledge of the nth roots of unity from Section 10.7. Let

α = exp
(

2πj

5

)
= cos

(
2π
5

)
+ j sin

(
2π
5

)

Then the roots of z5 − 1 = 0 are α, α2, α3, α4 and 1 and

z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1) = (z − 1)(z − α)(z − α2)(z − α3)(z − α4).

For convenience, write β = α2, and note that β̄ = α3 while ᾱ = α4. Our problem is to
factorise z4 + z3 + z2 + z + 1 as a product of real quadratic factors. We know the roots are
α, ᾱ, β and β̄. Now construct the quadratic with roots α and ᾱ. We have

(z − α)(z − ᾱ) = z2 − (α + ᾱ) + α.ᾱ = z2 − 2<(α) + 1

where <(α) is the real part of α. Since (z − β)(z − β̄) behaves in the same way, we have

z5 − 1 = (z − 1)(z2 − 2<(α) + 1)(z2 − 2<(β) + 1),

= (z − 1)
(

z2 − 2 cos
(

2π
5

)
+ 1
)(

z2 − 2 cos
(

4π
5

)
+ 1
)

.

and this is a product of real linear and quadratic factors.
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Questions 1 (Hints and solutions start on page 159.)

10.1. Q. a) Let z = 1 + 3j and w = 2 − j be complex numbers. Express each of the
following complex numbers in the form x + jy where x and y are real numbers.

z − 3w,
1
z
,

∣∣∣∣w + w̄

w − w̄

∣∣∣∣ . [5 marks]

b) Express the complex number

z = 1−
√

3j

exactly in modulus - argument form. Hence find the modulus and principal argument of z4.
[5 marks]

c) Find all solutions w to the equation

w3 = −27j

and mark them on an Argand diagram. [5 marks]

10.2. Q. a) Let z = 1 − 2j and w = 3 + j be complex numbers. Express each of the
following complex numbers in the form x + jy where x and y are real numbers.

zw,
w

z + 2 + j
, |1 + 3j − zz̄| . [5 marks]

b) Express the complex number −2 + 2j exactly in modulus - argument form. Hence
find all solutions w to the equation

w3 = −2 + 2j

and mark them on an Argand diagram. [5 marks]

10.3. Q. a) Let z = 3 + j and w = 1− 7j. Express

w

w + z̄

in the form x + jy where x and y are real. Find also

|z|, |w|,
∣∣∣w
z

∣∣∣ . [5 marks]
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b) Express the complex number −2 + 2j in polar form. Hence solve the equation

z3 = −2 + 2j,

expressing the solutions in polar form and marking them in the Argand
Diagram. [5 marks]

10.4. Q. a) Let

p(z) = z5 − 5z4 + 8z3 − 2z2 − 8z + 8.

Show that p(2) = 0. Show also that z2 − 2z + 2 is a factor of p(z). Hence write p as a
product of linear factors. [10 marks]

10.5. Q. Show that z − (1 + j) is a factor of the real polynomial

p(z) = z3 + 2z2 − 6z + 8.

Hence write p as a product of linear factors. [5 marks]

10.6. Q. Let

p(z) = z4 − 3z3 + 5z2 − 27z − 36.

Show that p(3j) = 0. Hence write p as a product of linear factors. [5 marks]



Chapter 11

Matrices

11.1 Introduction

A matrix is a rectangular array of numbers. For example(
1 2
3 2

)
,

(
1 4 6
2 −3 π

)
,

( √
2

−√2

)
.

You will find both round and square brackets being used.
If a matrix has n rows and m columns then it is said to be an n × m matrix. The

above examples are 2× 2, 2× 3 and 2× 1.
We usually denote the element in the ith row and jth column of a matrix A by Aij , or

sometimes aij . So the elements of an n×m matrix are labelled as follows

A =




A11 A12 A13 · · · A1m

A21 A22 A23 · · · A1m

A31 A32 A33 · · · A1m

. . . . . . . . . . . . . . . . . . . . . . . . . . .

An1 An2 An3 · · · Anm




and we often write things like A = (aij) to indicate that the elements of the matrix A are
called aij . For example

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12 b13

b21 b22 b23

)
.

At the moment a matrix is just a symbol or a diagram. However, it turns out that
we can usefully combine matrices in various ways. In fact we can develop an algebra for
matrices.

11.2 Terminology

There a number of words that are used to describe matrices of certain shapes and properties.
I will gather a number of them together here for reference.

Two matrices are said to have the same size if they have the same number of rows and
the same number of columns.
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A matrix with the same number of rows as columns is called a square matrix, other
types tend to be called rectangular.

An n× 1 matrix (n rows and 1 column) is called a column vector and a 1×n matrix
(1 row and n columns) is called a row vector . Vectors are considered in their own right
in the “Engineering Science” course EG1007.

The diagonal of a square matrix is made up of the elements down the diagonal from
top left to bottom right: a11, a22, . . . , ann. For example


1 2 1

5 2 2
4 3 6




A square matrix is said to be a diagonal matrix if all the elements not on the diagonal
are zero. So the following are diagonal matrices:

(
1 0
0 2

)
,


2 0 0

0 4 0
0 0 3


 .

A zero matrix is a matrix with all its elements zero. We write such a matrix as 0.
The size usually has to be deduced from the context.

The n × n identity matrix is the n × n (square) diagonal matrix with 1’s down the
diagonal. This is denoted by In, or just I if the size is known from the context. For example

I2 =
(

1 0
0 1

)
, I3 =


1 0 0

0 1 0
0 0 1


 .

The transpose AT of a matrix A is the matrix obtained by switching over the rows
and the columns of A, so the first row of A becomes the first column of AT and so on. In
symbols we have

(AT)ij = Aji.

If A is an n×m matrix then AT is an m× n matrix. Examples:

(
1 2
4 3

)T

=
(

1 4
2 3

)
,


2 3

1 4
2 6




T

=
(

2 1 2
3 4 6

)

In particular, the transpose of a row vector is a column vector and vice versa.
A square matrix A is said to be symmetric if aij = aji and skew-symmetric or

anti-symmetric if aij = −aji. The following matrix is symmetric

A =


1 2 3

2 1 5
3 5 4


 , A = AT.
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The following matrix is skew-symmetric:

A =


 0 1 2
−1 0 3
−2 −3 0


 , A = −AT.

Note that the diagonal elements of a skew-symmetric matrix must all be zero, since aii =
−aii.

That’s enough jargon for the time being. Note that most of these definitions are just
referring to the shape of the matrix.

11.3 Matrix Algebra

It turns out to be very useful to combine matrices in various ways. We are going to set
up an algebra for matrices by defining rules for adding, subtracting, multiplying matrices
etc. The algebra that we get is quite similar to that of ordinary numbers but there are also
some very important differences.

11.3.1 Addition of Matrices

Suppose that A and B are two matrices of the same size. Then their sum C = A + B is
defined by the rule

Cij = Aij + Bij

In other words, each element of the sum is the sum of the corresponding elements of A and
B. For example (

1 2
4 6

)
+
(

2 3
7 4

)
=
(

3 5
11 10

)
,

(
1
2

)
+
(

4
6

)
=
(

5
8

)
,

(
1 2
3 4

)
+
(

2
6

)
is not allowed.

11.3.2 Subtraction of Matrices

This follows the same idea as for addition. Suppose that A and B are two matrices of the
same size. Then their difference C = A−B is defined by the rule

Cij = Aij −Bij.

For example, (
1 2
4 6

)
−
(

2 3
7 4

)
=
(−1 −1
−3 2

)
,

(
1 2

)− (3 4
)

=
(−2 −2

)
,

(
1 2
3 4

)
−
(

1
2

)
is not allowed.
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11.3.3 Multiplication by a Number

If λ is a number and A is a matrix then λA is the matrix, of the same size as A, given by

(λA)ij = λAij

In other words, just multiply each element of A by λ.
For example,

2
(

1 2
3 4

)
=
(

2 4
6 8

)
, −3

(
1
2

)
=
(−3
−6

)
.

π
(
1 2

)
=
(
π 2π

)
, −

(
2 3
4 5

)
=
(−2 −3
−4 −5

)

Putting some of these rules together we now get things like this: if A =
(

1 0 2
3 1 0

)
and

B =
(

4 0 0
5 2 1

)
then

3A− 2B =
(

3 0 6
9 3 0

)
−
(

8 0 0
10 4 2

)
=
(−5 0 6
−1 −1 −2

)
.

11.3.4 Multiplication of Matrices

This is where the fun starts. The rules up to now have been fairly obvious. The rule for
multiplication is not the obvious one. I will give the definition, explain how to use it and
then try to explain where it comes from.

Suppose that A is an n × l matrix and B an l × m matrix, so that A has the same
number of columns as B has rows. Then the matrix C = AB is defined by

Cij =
l∑

k=1

AikBkj

and is an n ×m matrix (same number of rows as A and same number of columns as B).
Spelling the definition out a bit more, we get

Cij = Ai1B1j + Ai2B2j + Ai3B3j + · · ·+ AilBlj.

You can think of this as saying that the (i, j) element of C is the result of multiplying that
i row of A into the j column of B.

Some examples may make this clearer.(
2 1
3 4

)(
4 2
6 1

)
=
(

2.4 + 1.6 2.2 + 1.1
3.4 + 4.6 3.2 + 4.1

)
=
(

14 5
36 10

)
,

(
1 2 1
2 0 1

)4 2
0 1
2 1


 =

(
1.4 + 2.0 + 1.2 1.2 + 2.1 + 1.1
2.4 + 0.0 + 1.2 2.2 + 0.1 + 1.1

)
=
(

6 5
10 5

)
,
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(
2 3 4

)1
2
1


 =

(
2.1 + 3.2 + 4.1

)
= (12) a 1× 1 matrix ,

(
1
2

)(
3 4

)
=
(

1.3 1.4
2.3 2.4

)
=
(

3 4
6 8

)
.

You will need some practice to get used to this definition.

11.3.5 Origins of the Definition

Where does such a complicated definition come from?
Suppose we change coordinates in a plane by a transformation of the form

x′ = a11x + a12y,

y′ = a21x + a22y.

This is what is known as a linear transformation. We can represent this transformation by
giving its coefficients, arranged as a matrix:

A =
(

a11 a12

a21 a22

)
,

which contains all the necessary information about the transformation. If we write

X ′ =
(
x′, y′

)
and X =

(
x, y
)
, we see that X ′ = AX, (11.1)

and we represent the action of this linear transformation by multiplication with the
column vector of co-ordinates.

Now suppose that we do a second transformation of the same form after the first one,
say the transformation:

x′′ = b11x
′ + b12y

′,
y′′ = b21x

′ + b22y
′,

represented by the matrix

B =
(

b11 b12

b21 b22

)

What now is the transformation from (x, y) to (x′′, y′′)? Doing the substitutions gives

x′′ = b11(a11x + a12y) + b12(a21x + a22y)
y′′ = b21(a11x + a21y) + b22(a21x + a22y),

and if we tidy this up we get

x′′ = (b11a11 + b12a21)x + (b11a12 + b12a22)y
y′′ = (b21a11 + b22a21)x + (b21a12 + b22a22)y.
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So the transformation from (x, y) to (x′′, y′′) is also a linear transformation and its
coefficient matrix C (say) is given by

C =
(

b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

)
= BA

So, according to our definition of matrix multiplication, the matrix of the combined trans-
formation is just the product of the matrices of the individual transformations. That is
why multiplication is defined the way that it is.1

The result is true in general. Multiplication of matrices is defined so as to agree with
what happens when we combine, or compose linear transformations.

11.4 Properties of Matrix Algebra

Much of matrix algebra follows the same rules as ordinary algebra. The main difference
comes with the behaviour of matrix multiplication.

The thing to remember about matrix multiplication is that, in general, AB 6= BA. So
the order in which you multiply matrices matters. If it does happen to be the case that
AB = BA then we say that these two matrices commute. An example in which AB 6= BA
is given by

(
2 1
3 1

)(
1 0
2 0

)
=
(

4 0
5 0

)
,

(
1 0
2 0

)(
2 1
3 1

)
=
(

2 1
4 2

)
.

A square matrix certainly commutes with itself, so it does make sense to talk about
A2, A3 etc, if A is a square matrix. But note the following difficulty. Suppose that A and
B are two square matrices of the same size. Then

(A + B)2 = (A + B)(A + B) = A(A + B) + B(A + B) =

AA + AB + BA + BB = A2 + AB + BA + B2

since the multiplying out of brackets is allowed. Now note that this cannot be simplified
further. It need not be equal to A2 + 2AB + B2, because BA need not be the same thing
as AB.

The message here is that you have to be very careful when using standard algebraic
techniques on matrices in case you are accidentally assuming that matrices commute. You
have to particularly careful when multiplying out brackets. But this is the only rule that
goes wrong; things like A(BC) = (AB)C, the associativity of multiplication, still hold
whenever they make sense.

1You may wish to read BA as B follows A; it is then clear that C = BA has come out the correct way
round
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11.4.1 The Identity and Zero Matrices

We defined these earlier on. Now note their basic properties. Let us stick to square n× n
matrices. Let I and 0 be the n× n identity and zero matrices. Then, for any n× n matrix
A,

AI = IA = A, A0 = 0A = 0, A + 0 = A.

So the identity matrix works like a ‘1’ and the zero matrix works like a ‘0’. For example


1 0 0

0 1 0
0 0 1




a b c

d e f

g h k


 =


a b c

d e f

g h k




11.4.2 Relating Scalar and Matrix Multiplication

We now have two sorts of multiplication that can be used on a matrix A; we can multiply
it by a number or by another matrix. At the moment there is no problem about what we
mean by a number, but in Section 10 we meet another sort of number called a complex
number, and it turns out that these work just as well. This sort of multiplication is given
a special name; it is scalar multiplication, because the numbers are sometimes called
scalars. This contrasts with matrix multiplication just discussed, when we take the
product of two matrices.

How are they related? In the obvious way. If λ is a scalar, or number, and A is an
n×m matrix, then

λA = (λIn)A = A(λIm),

which is exactly what you would expect. In other words, multiplication by a scalar is the
same as matrix multiplication by a diagonal matrix (of the right size) with the scalar on
the diagonal.

And as you expect, multiplying by a 1× 1 matrix (a11) when it is allowed is exactly the
same as multiplying by the scaler a11.

11.4.3 Transpose of a Product

This is worth a mention, though I will not prove anything. The transpose of a product is
related to the transposes of the individual terms of the product by

(AB)T = BTAT.

In other words, the transpose of the product is the product of the transposes in the reverse
order. And we have just seen that the order in which a product is written is important.

This works for any length of product:

(ABC . . . Z)T = ZT . . . CTBTAT.
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11.4.4 Examples

Let us now use what we know to do some calculations with matrices.

11.1. Example. If A =
(

1 2
0 1

)
and B =

(
1 0
2 1

)
evaluate C = A(A + B) + 2B2.

Solution

A + B =
(

2 2
2 2

)
, A(A + B) =

(
1 2
0 1

)(
2 2
2 2

)
=
(

6 6
2 2

)
,

B2 =
(

1 0
2 1

)(
1 0
2 1

)
=
(

1 0
4 1

)
.

So

C = A(A + B) + 2B2 =
(

6 6
2 2

)
+ 2

(
1 0
4 1

)
=
(

8 6
10 4

)

11.2. Example. Let A =
(

1 2
2 3

)
and B =

(
1 2

)
. Which of the following expressions

make sense?

AB, BA, A + B, ABT, BBT, BTB.

Solution AB certainly does not work because A has two columns and B has only one row
— they don’t fit.

BA make sense because B has two columns and A has two rows.
A + B does not make sense because A and B have different sizes.
ABT does work because BT has two rows and A has two columns.
Both BBT and BTB work (they always work). Note that BBT is a 1×1 matrix whereas

BTB is a 2× 2 matrix. So, in fact, something like A + 2BTB will also work.

11.3. Example. Prove that the square of a symmetric matrix or an anti-symmetric matrix
is a symmetric matrix.

Solution Recall that A is symmetric if AT = A and anti-symmetric if AT = −A. Now

(A2)T = (AA)T = ATAT

and this last expression is equal to AA = A2 in both cases. So (A2)T = A2 and hence A2

is symmetric.

11.4. Example. We know that in general AB 6= BA. Consider the matrix A =
(

1 0
2 1

)
.

Which 2× 2 matrices B satisfy AB = BA?



11.5. INVERSES OF MATRICES 99

Solution Write B =
(

a b

c d

)
. We want to find the possibilities for a, b, c and d. Now

AB =
(

1 0
2 1

)(
a b

c d

)
=
(

a b

2a + c 2b + d

)
, and

BA =
(

a b

c d

)(
1 0
2 1

)
=
(

a + 2b b

c + 2d d

)
.

For these two matrices to be equal a, b, c and d must satisfy the simultaneous equations

a + 2b = a, b = b,

c + 2d = 2a + c, d = 2b + d.

The second equation tells us nothing. The first says that b = 0. The last equation
now tells us nothing and, finally, the third equation tells us that a = d. So, putting it all
together, b must be 0, a must equal d and c can be anything. So the matrices that we are
looking for are those of the form

B =
(

a 0
c a

)

where a and c are arbitrary.

11.5 Inverses of Matrices

What about dividing matrices? This is much more difficult.
Let’s start by thinking about ordinary numbers. The problem of dividing a by b is just

the same as the problem of multiplying a by 1/b. So, granted that we know how to do
multiplication, the problem of division boils down to the problem of finding ‘inverses’: the
inverse of b is 1/b — the unique number which, when multiplied by b gives 1. Note that
this is really the same problem as that of solving the equation bx = 1.

We can always find the inverse of an ordinary number so long as that number is not
zero.

Now consider matrices. We are going to consider square matrices only and are going
to ask this question: given a square matrix A can we find a square matrix B such that
AB = I? If so, there can be only one such B; we will call B the inverse matrix of A and
write it as A−1.

11.5. Example. If we know a little more about B, it is easy to show it is unique: suppose
that AB = I and CA = I. Show that B = C.

Solution From the definitions and the associativity of multiplication, we have

B = IB = (CA)B = C(AB) = CI = C.
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The inverse of a 2× 2 matrix. If A−1 is the inverse matrix for A, we have

AA−1 = I and A−1A = I.

Before considering the general case let’s look at 2× 2 matrices in detail.

Suppose that A =
(

a b

c d

)
. Can we find a matrix B such that AB = I? Let B =(

x y

z t

)
, and suppose it is the inverse for A. Then

AB =
(

a b

c d

)(
x y

z t

)
=
(

ax + bz ay + bt

cx + dz cy + dt

)
=
(

1 0
0 1

)

This gives us the following simultaneous equations to solve for x, y, z and t:

1 = ax + bz 0 = ay + bt

0 = cx + dz 1 = cy + dt

Solving the first and third equations and then the second and fourth gives:

x =
d

∆
, y =

−b

∆
, z =

−c

∆
, t =

a

∆

where ∆ = ad − bc. Which is fine and gives us a unique answer, provided that ∆ is not
zero! In fact, it can be shown that:

The matrix 2× 2 matrix A will have an inverse so long as ad− bc 6= 0. In that
case the inverse is unique and is given by

A−1 =
1

ad− bc

(
d −b

−c a

)

11.6. Example. Show that the matrix A =
(

1 2
2 3

)
has an inverse and find the inverse.

Solution The matrix A has an inverse because ∆ = 1.3− 2.2 = −1 6= 0. The inverse is

A−1 =
1
−1

(
3 −2
−2 1

)
=
(−3 2

2 −1

)
.

You can now easily check that

AA−1 = I = A−1A.

11.7. Example. The matrix A =
(

1 2
1 2

)
does not have an inverse.

Solution The matrix A does not have an inverse because ∆ = 1.2 − 2.1 = 0. This shows
up the important fact that it is not only the zero matrix that does not have an inverse —
lots of others don’t either.



11.5. INVERSES OF MATRICES 101

11.8. Example. When does the diagonal matrix A =
(

a 0
0 b

)
have an inverse?

Solution The diagonal matrix A =
(

a 0
0 b

)
has an inverse precisely when both a and b are

not zero. The inverse is then

A−1 =
(

1
a 0
0 1

b

)
=
(

a−1 0
0 b−1

)
.

Let me now tell you what happens in general, without proving anything and leaving
one important concept to the next section.

11.9. Theorem. Let A be a square n × n matrix. There may or may not be an n × n
matrix B such that AB = I (or BA = I). If there is such a matrix B then it is unique and
is called the inverse A−1 of A. In this case we say that A is invertible or non-singular and
we have not only AA−1 = I but also

A−1A = I and (A−1)−1 = A.

There is a number associated to each n × n matrix, called the determinant, and a square
matrix has an inverse if and only if this determinant is not zero.

The determinant of A =
(

a b

c d

)
is ad− bc.

One useful result is that an n × n diagonal matrix is invertible precisely when none of
the diagonal elements is zero. In that case the inverse is the diagonal matrix whose elements
are the inverses of the original elements. So for example


3 0 0

0 4 0
0 0 2



−1

=


 1

3 0 0
0 1

4 0
0 0 1

2




11.5.1 Complex Numbers and Matrices

You may be surprised to find that our definition of matrix multiplication already gives us
the arithmetic of complex numbers. Define two matrices by

I =
(

1 0
0 1

)
J =

(
0 1
−1 0

)

and consider all matrices of the form aI+bJ for a, b ∈ R. Given that I is the identity matrix,
it may not be too confusing to write such matrices as a + bJ . What may be surprising is
that the matrix product of a + bJ with c + dJ is exactly what it should be if we thought of
each matrix as a complex number and replaced J by j. That isn’t all; you can easily check
that a + bJ has a matrix inverse if and only if a2 + b2 > 0 — the same condition you need
to invert the corresponding complex number — and that the inverse is what you expect.

In other words, you don’t need to invent j as soon as you have the idea of a matrix. I
hope this dispells any myth that j does not exist!
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11.6 Determinants

For a 2× 2 matrix A =
(

a b

c d

)
the number ad− bc is called the determinant of A. We

write it as det(A), or |A| or
∣∣∣∣a b

c d

∣∣∣∣.
More generally, associated with any n × n matrix A = (aij) we have a number, called

the determinant of A, denoted as above.
The definition of this number is rather complicated. I have given it for 2 × 2 matrices.

The definition for 3× 3 matrices is given in terms of 2× 2 matrices as follows:∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ .
For an n × n matrix A the determinant of the (n − 1) × (n − 1) matrix obtained by

deleting the ith row and jth column of A is called the (i, j)-minor of A. We denote it by
Mij .

We can now write the above definition of the determinant of a 3× 3 matrix as∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11M11 − a12M12 + a13M13,

which looks a bit more tidy.
I can now give you the definition of the determinant of an n × n matrix A. It is just

the same as the above, expressing det(A) in terms of the minors of the top row of A.

det(A) = a11M11 − a12M12 + a13M13 − · · · ± a1nM1n.

Note that the signs are alternating +−+−+− etc.
Here is an example.

∣∣∣∣∣∣∣∣
1 0 0 1
0 1 0 2
1 1 3 1
1 0 4 3

∣∣∣∣∣∣∣∣
= 1.

∣∣∣∣∣∣
1 0 2
1 3 1
0 4 3

∣∣∣∣∣∣− 0 + 0− 1.

∣∣∣∣∣∣
0 1 0
1 1 3
1 0 4

∣∣∣∣∣∣ ,

= 1.
(

1.
∣∣∣∣3 1
4 3

∣∣∣∣− 0 + 2.
∣∣∣∣1 3
0 4

∣∣∣∣
)
− 1.

(
0− 1.

∣∣∣∣1 3
1 4

∣∣∣∣+ 0
)

,

=
∣∣∣∣3 1
4 3

∣∣∣∣+ 2
∣∣∣∣1 3
0 4

∣∣∣∣+
∣∣∣∣1 3
1 4

∣∣∣∣ ,
= (9− 4) + 2(4 − 0) + (4− 3),
= 14.

That’s the definition. We don’t often work out determinants in this way if we can help
it. It gets to be very hard work if n is much bigger than 4. It can be shown that, using
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the above method, it takes in all about (e − 1)n! multiplications to work out an n × n
determinant. The number of multiplications needed to evaluate a 20 × 20 determinant is
4, 180, 411, 311, 071, 440, 000. If a computer can do a million multiplications per second, and
we don’t count the time for the additions etc., then the evaluation of a 20×20 determinant
will take about 130, 000 years by this method. This is not practical! There are better
methods which will reduce the time to a matter of seconds. These methods are consequences
of the basic properties of determinants that I will now explain.

11.6.1 Properties of Determinants

I am going to state a number of properties of determinants without proof. They can all be
proved from the above definition.

I will adopt the usual habit of using the word ‘determinant’ to refer both to the value
and to the array of numbers. So I will talk about a ‘row of the determinant’ when what I
really mean is a row of the matrix that produces the determinant.

Here are some rules:

1. Interchanging two rows of A just changes the sign of det(A).

2. Interchanging two columns of A just changes the sign of det(A).

3. If A has a complete row, or column, of zeroes then det(A) = 0.

4. det(A) = det(AT).

5. To any row of A we can add any multiple of any other row without changing det(A).

6. To any column of A we can add any multiple of any other column without changing
det(A).

7. A common factor of all the elements of a row of A can be ‘taken outside the determ-
inant’, in the following sense:∣∣∣∣∣∣

a11 a12 a13

p.a21 p.a22 p.a23

a31 a32 a33

∣∣∣∣∣∣ = p

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ .
8. The same applies to columns.

9. If all the elements of A below (or above) the diagonal are zero then the determinant
is equal to the product of the diagonal elements. In particular, the determinant of a
diagonal matrix is equal to the product of the diagonal elements. For example∣∣∣∣∣∣∣∣

a b c d

0 p q r

0 0 s t

0 0 0 u

∣∣∣∣∣∣∣∣
= a.p.s.u.

10. The determinant of a product is the product of the determinants. In symbols,

det(AB) = det(A) det(B).



104 CHAPTER 11. MATRICES

These give us ways to manipulate a determinant into a more manageable form for
calculation. Let me do one or two examples to give you the idea. I will not be very
systematic about it at this stage.

11.10. Example. Show that

∆ =

∣∣∣∣∣∣∣∣
1 0 1 1
2 1 2 1
3 2 1 2
1 1 2 1

∣∣∣∣∣∣∣∣
= 3.

Solution We aim to produce as many zeros as possible and, ideally to produce a matrix in
which all the elements below (or above) the diagonal are zero.

∣∣∣∣∣∣∣∣
1 0 1 1
2 1 2 1
3 2 1 2
1 1 2 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0
2 1 0 −1
3 2 −2 −1
1 1 1 0

∣∣∣∣∣∣∣∣
, [C ′

3 = C3 − C1]; [C ′
4 = C4 −C1].

Here we have subtracted column 1 from column 3 and from column 4.

∆ =

∣∣∣∣∣∣∣∣
1 0 0 0
2 1 0 −1
1 1 −2 0
1 1 1 0

∣∣∣∣∣∣∣∣
. [R′

3 = R3 −R2].

Here we have taken row 2 from row 3. Now switch over rows 2 and 4, which changes the
sign:

∆ = −

∣∣∣∣∣∣∣∣
1 0 0 0
1 1 1 0
1 1 −2 0
2 1 0 −1

∣∣∣∣∣∣∣∣
. [R′

2 = R4]; [R′
4 = R2].

Finally, subtract column 2 from column 3 to get:

∆ = −

∣∣∣∣∣∣∣∣
1 0 0 0
1 1 0 0
1 1 −3 0
2 1 −1 −1

∣∣∣∣∣∣∣∣
[C ′

3 = C3 − C1].

Now all the elements above the diagonal are zero, so the value of the determinant is the
product of the diagonal elements. So

det(A) = −(1× 1×−3×−1) = −3.
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11.11. Example. Prove that

∣∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ = (x− y)(y − z)(z − x).

Solution Before we start, remember that a2− b2 = (a− b)(a + b). We are going to use this
a lot.

Start by subtracting row 1 from both row 2 and row 3 to get:

det(A) =

∣∣∣∣∣∣
1 x x2

0 y − x y2 − x2

0 z − x z2 − x2

∣∣∣∣∣∣ .
All the terms in the second row now have common factor (y − x) and all the terms in the
third row have common factor (z − x). So use the rules to pull these out:

det(A) = (y − x)(z − x)

∣∣∣∣∣∣
1 x x2

0 1 y + x

0 1 z + x

∣∣∣∣∣∣ .
Next we subtract row 2 from row 3 and get a matrix in which all the terms below the
diagonal are zero:

det(A) = (y − x)(z − x)

∣∣∣∣∣∣
1 x x2

0 1 y + x

0 0 z − y

∣∣∣∣∣∣ = (y − x)(z − x).1.1.(z − y)

= (x− y)(y − z)(z − x).

11.7 The Fourier Matrix

In the remainder of these notes we show how matrices are of use in describing and solving
systems of equations. However before we do that, we present an application which may be
a little surprising. The Fourier Matrix is used almost everywhere in modern computer
graphics; almots every television program you watch will use these ideas somewhere in the
special effects or titles.

The Fourier matrix is a complex matrix; one whose entries are complex numbers. So
far we have deliberatly restricted out attention to real matrices because complex ones
introduce no new ideas. However this example is a matrix which is really a “complex
rotation” and we need the extra flexibility to have complex coefficients. It sounds odd but
is certainly useful.

We need a simple result about complex numbers.

11.12. Lemma. Let zn = 1, and assume that z 6= 1. Then

1 + z + z2 + · · ·+ zn−1 = 0.

Proof. It is trivial to verify the factorisation

zn − 1 = (z − 1)(1 + z + z2 + · · ·+ zn−1).
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The result follows, since we are given a zero of the left hand side.

Now recall our work on the nth roots of unity in Section 10.7. Let ω = exp(−2πj/n);
then the roots are all of the form ωk for some k with 0 ≤ k < n. Note also that ω satisfies
the condition of the lemma; that is why the lemma will be interesting.

We now define the Fourier matrix Fn for any integer n ≥ 1 by:

Fn =
1√
n




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


 .

Note that Fn is a complex symmetric matrix; so is the same as its transpose. Thus its adjoint
(the transposed complex conjugate of the given matrix) is just the complex conjugate. We
write this as F̄n. It is given simply by replacing ω in the above by ω̄ = exp(2πj/n).

A word about notation: we shall have quite a lot to do with ω. Note the choice of sign
in the exponent; it was arbitrary, but this way the definition of Fn is correct. When we
need to emphasise that we have an nth root of unity, we shall write ωn.

In the study of complex vector spaces, an interesting class of matrices are the unitary
ones; those whose inverse is the adjoint. They are the complex equivalent of the orthogonal
matrices, in which the inverse is just the transpose. An orthogonal matrix represents a
rotation of given orthonormal axes (possibly with a reflection); a unitary matrix could be
considered for this reason, as a complex rotation.

11.13. Theorem. The Fourier matrix Fn is a unitary matrix.

Proof. It is enough to show that F̄nFn = In, where In is the identity matrix. Since the
pth row of F̄n is

1√
n

(1, ω̄p, ω̄2p, . . . , ω̄(n−1)p)

while the qth column of Fn is

1√
n

(1, ωq, ω2q, . . . , ω(n−1)q),

and since ω̄q = w−q, the entry in the (p, q)th place of the product is just

1
n

(1 + ω(p−q) + ω2(p−q) + · · · + ω(n−1)(p−q)).

We now distinguish two cases. If p = q, this is just (1 + 1 + · · · + 1)/n = 1, while if p 6= q,
it is zero by the lemma, since ω(p−q) is an nth root of unity, but is not equal to 1. It follows
that the product is the identity matrix as claimed.

We can identify a complex valued function defined on Zn with an element of C n by
f → f = (f(0), f(1), . . . , f(n − 1)).2 The discrete Fourier transform of f is then defined

2We confuse the function f and the vector f ; it may have been clearer to drop the bold font vector
notation.
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to be the action of the Fourier matrix on (f(0), f(1), . . . , f(n − 1)). It will be convenient
to write f ∈ C

n , or f = (f1, f2, . . . , fn−1) although we think of C n in this form as periodic
functions on Z

n.
Identifying the Fourier matrix as unitary gives one way of thinking of the discrete Fourier

transform; as a complex rotation in C
n . The idea that a rotation of the co-ordinate axes

will preserve essential features of a problem, while possibly making the new co-ordinate
representation easier to work with, is a familiar one. We thus begin a study which will
show there are indeed some things which are easier to describe and manipulate in the
transformed representation.

11.1. Q. he Fourier matrices F2 and F3 are

1√
2

(
1 1
1 −1

)
and

1√
3


1 1 1

1 ω ω2

1 ω2 ω


 ,

where

ω = −1
2
− i

√
3

2
= cos

(
2π
3

)
− j sin

(
2π
3

)
.

Check that these are both unitary matrices directly, and write down F4 and F5.

11.14. Corollary. Let f = (f0, f1, . . . , fn−1) be a vector in Rn or C n , and define F in C n

by

Fp =
1√
n

n−1∑
k=0

fk exp
(−2πjkp

n

)
=

1√
n

n−1∑
k=0

fkω
jp (0 ≤ p ≤ n− 1), (11.2)

Then the transformation can be inverted to give

fk =
1√
n

n−1∑
p=0

Fp exp
(

2πjkp

n

)
=

1√
n

n−1∑
p=0

Fpω
−kp (0 ≤ k ≤ n− 1). (11.3)

Proof. Our definition gives F = Fn(f). Since the Fourier matrix is unitary, we have
f = F̄n(F), which is the required result.

11.7.1 Rapid convolution and the FFT

It so happens that the Fourier transform can be done rapidly for certain values of n. Indeed
even if n = 512×512 it can be implmented in hardware in such a way that it can be pipelined
- essentially it performs a complex rotation is real time. In this arrangement the operation
is known as the fast fourier transfrom or FFT.

Many image manipulations involve an operation called convolution in which each pixel
has its value modified depending on values of all of its neighbouring pixels. One such
eaxmple is that of making an image more blurred, but there are lots of more interesting
ones.
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Now you see the problem. If you have to look up lots of neighbouring values for each
pixel in an image, and there are (say) 512× 512 pixels to do this on, the operation will be
very slow. the cruicial importance of the FFT is that it converts convolution into a very
quite pointwise multiplication operation. It is much qucker to do a complex rotation (the
FFT), then do a simple manipulation, and then rotate backwards (the inverse FFT) than
to implement convolution directly. And that is how it is done every night on television!

11.8 Linear Systems of Equations

.
We have spent some time finding out how to manipulate matrices, but have only hinted

above and in Section 11.3.5 as to why they are of interest. Their main use is to describe
the real world; the position or motion of an object in space, or the state of a collection of
coupled systems. We leave such descriptions to the Engineering courses which rely on you
being able to handle matrices. Here we take up a very simple application, to the study of
simultaneous linear equations.

The system of n equations in m unknowns

a11x1 +a12x2 + a13x3 + · · · + a1mxm = b1

a21x1 +a22x2 + a23x3 + · · · + a2mxm = b2
...

...
...

an1x1 +an2x2 + an3x3 + · · · + anmxm = bn




(*)

can be written in our matrix notation far more simply as

Ax = b

where A = (aij) and x and b are the column vectors of the x’s and b’s; we first met this in
Equation (11.1).

The “standard” situation is when there are the same number of equations as there are
unknowns: n = m. In this case A is a square matrix.

If, in this case, A has an inverse matrix A−1 then

Ax = b gives A−1Ax = A−1b.

So

Ix = A−1b or x = A−1b.

So, in this case (∗) has the unique solution

x = A−1b.

Here we started by using matrix notation simply as an abbreviation, but the algebra we
introduced turned out to be useful; indeed solving a system of linear equations (of size
n×n) is very closely related to the the problem of finding the inverse of the corresponding
(square) matrix.
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11.15. Example. Check that
1 2 0

2 1 1
1 0 1



−1

=


−1 2 −2

1 −1 1
1 −2 3


 . (11.4)

Hence solve the system of equations

x + 2y = 1,
2x + y + z = 2,
x + z = 3.

Solution The given system can be written in matrix terms as
1 2 0

2 1 1
1 0 1




x

y

z


 =


1

2
3


 .

It is easy to verify that the inverse is correct. Thus
x

y

z


 =


−1 2 −2

1 −1 1
1 −2 3




1

2
3


 =


−3

2
6


 .

So the solution to the system is x = −3, y = 2 and z = 6.

In other cases, when for one reason or another we cannot find an inverse, a variety of
things can happen. Let me state the basic possibilities without proof.

n = m If det(A) 6= 0 then we have a unique solution, as above. This is the normal case.

If det(A) = 0 then either (1) the system is ‘inconsistent’ and has no solutions at all,
or (2) the system has infinitely many solutions.

As examples of these two cases consider the systems

x + y = 1
x + y = 2

}
,

x + y = 1
2x + 2y = 2

}
.

In both systems you can check that the corresponding matrix has zero determinant.
In the first one the two equations are obviously inconsistent and can have no solutions.
In the second one the second equation is really just the same as the first one so the
“solution” is y = 1 − x and x can take any value. So there are infinitely many
solutions.

n < m Here we have fewer equations than unknowns. It is usually the ‘under-determined’
case. The equations should not give enough information to fix a solution. So, generally
speaking, there will be infinitely many solutions though there are cases where there
are no solutions at all.

As examples of these two cases consider the following systems.

x + y + z = 1
x + 2y + z = 3

}
,

x + y + z = 1
x + y + z = 2

}
.

The first system has infinitely many solutions. It is satisfied by (x, 2,−1− x) for any
value of x. The second system is obviously inconsistent and has no solutions at all.
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n > m Here we have more equations than unknowns. It is usually the ‘over-determined’
case. There should normally be no solutions at all because there are too many condi-
tions for the variables to satisfy. In exceptional cases just about anything can happen
— unique solution, infinitely many solutions.

Consider the following three systems

x + y = 1
x − y = 2
x + y = 2


 ,

x + y = 1
x − y = 2
x + y = 1


 ,

x + y = 1
x + y = 1
x + y = 1


 .

The first system has no solutions at all; clearly the first and third equations are
inconsistent. The second system has precisely one solution; ignoring the irrelevant
third equation it is “really” the case with two equations in two unknowns. the third
system has infinitely many solutions; there is really only one equation present

11.9 Geometrical Interpretation

As is often the case, although we use algebra as a calculating tool, we use geometry as a way
of understanding what is happening. So let us try to get some feel for the above results by
looking at some pictures. We are going to consider systems of equations in two unknowns
x and y. One such equation ax + by = c represents a straight line in the (x, y)-plane; we
exclude the case when a = b = 0.

So the solutions to a set of simultaneous equations

a1x + b1y = c1 (l1)
a2x + b2y = c2 (l2)

...
...

anx + bny = cn (ln)

are the points common to the straight lines l1, l2, . . . , ln.
Now let’s look at the problem in terms of the number of equations.

One equation in two unknowns: the equation

ax + by = c

has infinitely many solutions — all the points on a line, since we excluded the case a = b = 0
and c 6= 0, in which case there are no solutions. The normal case is (rather boringly)
illustrated in Fig. 11.1.

Figure 11.1: Normal solution set of one equation in two unknowns.
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Two equations in two unknowns: the equations are

a1x + b1y = c1

a2x + b2y = c2

}
.

This system represents two straight lines. The normal case is when the two lines meet in a
single point; when there is precisely one solution to the system, as shown in Fig. 11.2. The
exceptional cases are:

• when the two lines are parallel, in which case there are no solutions, as illustrated in
Fig 11.4; and, even more exceptionally,

• when the two lines are identical so there are infinitely many solutions, as illustrated
in Fig 11.3.

Figure 11.2: Normal solution set of two
equations in two unknowns.

Figure 11.3: Co-incident lines, so many
solutions.

Figure 11.4: Parallel lines so no solu-
tions.

Three equations in two unknowns: here there are three straight lines. You can
probably convince yourself quite easily that the normal case is that the three lines do
not have any points in common — so no solutions. Exceptionally the three lines may have
just one point in common or otherwise infinitely many points in common. The normal case
is illustrated in Fig. 11.5.

Figure 11.5: Normal solution set of three equation in two unknowns.
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11.10 Gaussian Reduction

I now want to show you an efficient routine way for solving systems of simultaneous linear
equations. To keep life simple I will concentrate mainly on the normal situation of n
equations in n unknowns.

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
...

...
...

an1x1 + an2x2 + an3x3 + · · · + annxn = bn




. (*)

The method, known as Gaussian Reduction, is generally much quicker than the method
of finding the solution by x = A−1b. It is very suitable for implementation as a computer
routine and is also probably the best method to use by hand unless the system is very small
or very simple.

The method is very similar to the kind of thing that we were doing with determinants
in Examples 11.10 and 11.11 — trying to get zeros below the diagonal.

There are two stages to the method. The first stage, known as the reduction, stage
tries to combine the equations so as to get a system with an upper triangular matrix. Such
systems are easy to solve and the second stage proceeds to solve the system by a process
known as back-substitution. Another word sometimes used to described the shape of an
upper triangular matrix is to say that the system is in echelon form.

Let me describe the method in outline with an example. We start with a system like

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3,

and by combining equations in a systematic way we reduce it to the form

x1 + A12x2 + A13x3 = B1,

x2 + A23x3 = B2,

x3 = B3,

which can now be solved easily by solving the equations in reverse order. The last equation
gives x3. Substituting this value into the second equation gives x2. And then substituting
the values of x2 and x3 that we have just found into the first equation gives x1. This is
called back substitution.

11.10.1 The Simple Algorithm

The complicated bit is obviously the reduction to upper triangular form. We hope to be
able to program this method for a computer, so our approach had better be systematic.
Let me first describe the method in its simplest form and then try to improve it a bit and
also consider the cases where it fails to work.
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Step 1 Start with the first equation. Divide through by a11 so as to make the coefficient
of x1 equal to 1. Now, for each equation i = 2, . . . , n, subtract a1i times the first
equation from this equation. This will kill off the x1 term in each of equations 2, . . . , n.
This is the first stage of the reduction. Note that neither of these operations changes
the set of solutions, we are just putting the equations into an equivalent, but more
convenient form.

Let me do an example. Consider the system

2x1 + 4x2 + 8x3 = 4,
x1 + 3x2 − x3 = 1,
3x1 + 3x2 + 2x3 = 2.

(11.5)

Dividing through the first equation by the coefficient of x1 we get

x1 + 2x2 + 4x3 = 2,
x1 + 3x2 − x3 = 1,
3x1 + 3x2 + 2x3 = 2.

Now subtract the first equation from the second and 3 times the first from the third:

x1 + 2x2 + 4x3 = 2,
x2 − 5x3 = −1,
−3x2 − 10x3 = −4.

(11.6)

Step 2 Now we move on to the second equation and divide through by the coefficient of
x2. We subtract suitable multiples of equation 2 from each of the equations below it
so as to kill off their x2 terms. Because we don’t use the first equation, nothing we
do brings an x1 into any of these equations. And again we don’t change the set of
solutions of the equations

In the example we get, adding 3 times the second equation to the third equation:

x1 + 2x2 + 4x3 = 2,
x2 − 5x3 = −1,

−25x3 = −7.
(11.7)

Step 3 We carry on in this way. At the ith stage we divide through equation i by the
coefficient of xi and then subtract suitable multiples of the ith equation from the
equations below it so as to kill off the xi term in each of these equations. When we
have done n − 1 stages we will be left with a system in upper triangular form, as in
the above example. This upper triangular system is equivalent to the original one (∗)
in the sense that both sets of equations have the same solutions.

Step 4 Now solve by back-substitution. For the given example we get x3 = 7/25 from
the last equation. The second equation now becomes

x2 = 5x3 − 1 = 2/5

and the first equation becomes

x1 = 2− 2x2 − 4x3 = 2− 4/5 − 28/25 = 2/25.

So the solution to our system is x1 = 2/25, x2 = 2/5, x3 = 7/25.
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11.16. Example. Consider the following system of equations in which t is a parameter.

x − y + z = 2,
4x − 5y + (t + 4)z = 9,
3x + (t− 3)y − z = 8.

For what values of t does the system have (i) a unique solution, (ii) no solution, and (iii)
infinite number of solutions. In case (iii), solve for x and y in terms of z.

Solution We follow the steps just described. Step 1 uses the first equation to eliminate the
x - terms in the second and third equations, to give

x − y + z = 2,
− y + tz = 1,
+ ty − 4z = 2.

Now move to Step 2 and the second equation to eliminate y from the subsequent equations,
giving

x − y + z = 2,
y − tz = −1,

− (4− t2)z = 2 + t.

This is now in reduced echelon form. Consider the third equation, (4 − t2)z = 2 + t. If
t = −2, this reduces to the trivial equation 0z = 0 and z is unrestricted. In that case, we
use Step 4 to get y = −1− 2z and then x = 1− 3z.

It remains to consider what happens when t 6= −2, in which case the third equation
becomes (2− t)z = 1. If t = 2, we must have 0z = 1, and there are no solutions. However
if t 6= 2, we have z = 1/(t − 2) and then back substituting first for y and then for x as
described in Step 4 gives a unique solution.

11.10.2 Complications

One way to find out the difficulties that can occur with this algorithm is to write it as
computer (pseudo-) code. Writing the actual code is an interesting exercise, although in
Matlab, this has all been done for you.

In the simple case, the reduction step is performed as follows (written in pseudo-code):

1. for equation i=1 to equation (n-1) :
2. divide through equation i by a(i,i)
3. for equation j=(i+1) to equation n
4. subtract a(j,i) times equation i from equation j
5. end-for
6. end-for

The back-substitution is then done as follows

7. x(n) = b(n)/a(n,n)
8. for i = (n-1) down to 1
9. x(i) = b(i) - a(i,i+1).x(i+1) - ... - a(i,n).x(n)

10. end-for
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This is an accurate coding of the method described in Section 11.10.1. As it stands it may
fail to work on some perfectly reasonable systems. The first place where it can fail is at
line 2, where we might find ourselves dividing by zero (see also line 7).

To avoid this difficulty we adopt the process known as partial pivoting. This means
replacing line 2 by the following lines

2a. Let j be such that abs(a(j,i)) is the largest of
2b. abs(a(i,i)), abs(a(i+1,i), ..., abs(a(n,i))
2c. If j is not i then swap equations i and j.
2d. If all these elements are zero then FAIL.

In practice we usually replace line 2d by ‘ if all these magnitudes are less than
EPS’, where EPS is some very small quantity like 10−10. This is to cover for the possibility
that, due to computer rounding errors, a number that theoretically should be zero actually
shows up as a very small quantity.

11.10.3 Solving Systems in Practice

One reason to study this algorithm is because you may find it useful in solving small
systems of equations by hand. We have already done this, for example with the system in
Equation (11.5).

A second reason is to understand the sort of algorithm that computer algebra systems
such as Matlab will use. If you just want to solve a system of equations, you would use
Matlab’s built-in routine. My Matlab book suggests that

>> A = [ 2 4 8;1 3 -1;3 3 2];
>> B = [4;1;2]
>> X = inv(A) * B

will produce a solution to the system of equations (11.5). You can even use X = A\B, which
just applies the Gaussian reduction algorithm, and avoids actually computing the inverse.

A final reason is that you may wish to run through the algorithm yourself on a realistic
size of problem, doing the individual calculations by machine. Although not exactly the
same, you will find a very similar trace for the system (11.5) starting on page 118.

Here is another example to practice handling systems of equations.

11.17. Example. Consider the following system of equations, in which s and t are real
parameters

x − 2y + z = 9,
2x − 3y − z = 4,
−x + (2 + t)y + 3z = s− 14t.

By using row operations on the associated matrix, obtain a row-equivalent triangular form
suitable for solution by back substitution.

1. Find the value of t for which the system either has no solution or does not have a
unique solution. How does the behaviour of the system depend on s in these cases?

2. Use back substitution to solve the system in the case that t = −1 and s = −5.



116 CHAPTER 11. MATRICES

Solution Here is a machine trace of the solution (in Maple). This way I know it is correct
and the typesetting is eased. You are expected to be able to do questions of this type “by
hand”.

> A:=matrix(3,4,[1,-2,1,9,2,-3,-1,4,-1,2+t,3,s-14*t]);

A :=


 1 −2 1 9

2 −3 −1 4
−1 2 + t 3 −14 t + s




> B:=pivot(A,1,1);

B :=


 1 −2 1 9

0 1 −3 −14
0 t 4 9− 14 t + s




> C:=addrow(B,2,3,-t);

C :=


 1 −2 1 9

0 1 −3 −14
0 0 3 t + 4 9 + s




From the last line of the reduction, we see there is a unique solution unless the coefficient
of z in the last equation becomes zero, in which case, the equation becomes 0.z = 9 + s.
Thus there are no solutions when t = −4/3 unless s = −9. If s = −9, we have an infinite
family of solutions of the form

y = 3z − 14, x = 9 + 2y − z = 5z − 19,

where z is a free parameter.
If t = −1 and s = −5 the last equation becomes z = 4. Using back substitution, we see

first that y = −2 and then that x = 1.

11.11 Calculating Inverses

An extension of the ideas used in the Gaussian reduction algorithm discussed in Sec-
tion 11.10.1 for solving a system of simultaneous equations leads almost immediately to
an effective algorithm for computing inverses. The first step is to note that we did not
need to stop work with the system of equations (11.7) when it was reduced to an upper
triangular form. Continuing in the same way, the next step is to divide the last equation
by the coefficient of x3 to give:

x1 + 2x2 + 4x3 = 2,
x2 − 5x3 = −1,

x3 = −7/25.

The idea now is to work back up the set of equations, killing off the remaining non-diagonal
terms. Thus we add 5 times the third equation to the second, and −4 times the third
equation to the first, to get:

x1 + 2x2 + = 22/25,
x2 − = 2/5,

x3 = −7/25.
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The last step is to eliminate the final off-diagonal term by adding −2 times the second
equation to the first to give

x1 = 2/25,
x2 = 2/5,

x3 = −7/25.

Of course we can now read off the solution immediately, so this is an alternative (and rather
slower) way of doing the back substitution.

There is an alternative way to present this process, which shows that it also calculates
the inverse of the coefficient matrix. Our concern so far has been that the allowed row
operations did not change the solution set of the system of equations. Now that I am less
concerned directly with equations, I want to introduce a more concise notation, writing the
system of equations (11.5) using the augmented matrix

(A|b) =


2 4 8 | 4

1 3 −1 | 1
3 3 2 | 2


 .

Our first step was to multiply the first row by 1/2 to get

A1 =


1 2 4 | 2

1 3 −1 | 1
3 3 2 | 2


 .

This can be interpreted in terms of matrix algebra; let me do the same operation on the
identity matrix I3 to get the elementary matrix

E1 =


1/2 0 0

0 1 0
0 0 1




A calculation then shows that E1(A|b) = A1. We see that in this case, in order to do a
row operation on a matrix A, we can first do the required operation on the identity matrix,
and then pre-multiply by the resulting elementary matrix E. This fact is general; all the
row operations we shall need can be obtained by pre-multiplying by an elementary matrix
obtained by doing the required row-operations on the identity matrix.

The next step taken was to subtract the first equation from the second and 3 times the
first from the third. The resulting elementary matrices are

E2 =


 1 0 0
−1 1 0
0 0 1


 and E3 =


 1 0 0

0 1 0
−3 0 1


 .

Computing, we see that

E3.E2.E1.A =


1 2 4

0 1 −5
0 −3 −10


 ,
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as expected from equations (11.6). Continuing in this way, we find a sequence of elementary
matrices En, En−1, . . . , E1 such that En.En−1. . . . .E1.A = In. Let

B = En.En−1. . . . .E1;

we have just shown that B.A = In and so B is the inverse for A.
It remains to find a convenient way of recording the elementary matrices used to reduce

A to the identity In, and then computing their product. It turns out that we can do both
things at the same time. As before we write an augmented matrix as

[A|I3] =


2 4 8 | 1 0 0

1 3 −1 | 0 1 0
3 3 2 | 0 0 1


 .

We now manipulate A exactly as before; but by having I3 in the augmented matrix, we
record the product of the elementary matrices used to perform the reduction on A. The
remainder of the calculation is done, as an illustration, in a computer algebra package;
as noted in the forward, I have used Maple rather than Matlab .

> with(linalg):

> A:=matrix(3,3,[2,4,8,1,3,-1,3,3,2]);

A :=


 2 4 8

1 3 −1
3 3 2




> A0:=concat(A,diag(1,1,1));

A0 :=


 2 4 8 1 0 0

1 3 −1 0 1 0
3 3 2 0 0 1




> A1:=mulrow(A0,1,1/2);

A1 :=




1 2 4
1
2

0 0

1 3 −1 0 1 0
3 3 2 0 0 1




> A2:=pivot(A1,1,1);

A2 :=




1 2 4
1
2

0 0

0 1 −5
−1
2

1 0

0 −3 −10
−3
2

0 1




> A3:=pivot(A2,2,2);

A3 :=




1 0 14
3
2

−2 0

0 1 −5
−1
2

1 0

0 0 −25 −3 3 1
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> A4:=mulrow(A3,3,-1/25);

A4 :=




1 0 14
3
2

−2 0

0 1 −5
−1
2

1 0

0 0 1
3
25

−3
25

−1
25




> A5:=pivot(A4,3,3);

A5 :=




1 0 0
−9
50

−8
25

14
25

0 1 0
1
10

2
5

−1
5

0 0 1
3
25

−3
25

−1
25




> B:=delcols(A5,1..3);

B :=




−9
50

−8
25

14
25

1
10

2
5

−1
5

3
25

−3
25

−1
25




> multiply(A,B); 
 1 0 0

0 1 0
0 0 1




Note that, although the procedure was described as first reducing to triangular form,
and then removing the remaining off-diagonal elements using the 1’s on the diagonal, in
practice it is easy to clear all the non-diagonal elements in a given column as they are first
met. This operation is known as (full) pivoting.

11.18. Example. Let A =


 1 2 1

0 1 1
−1 3 5


. Show that A−1 =


 2 −7 1
−1 6 −1
1 −5 1


.

Solution We perform row operations on the augmented matrix
 1 2 1 1 0 0

0 1 1 0 1 0
−1 3 5 0 0 1


 −→


1 2 1 1 0 0

0 1 1 0 1 0
0 5 6 1 0 1


 [R′

3 = R3 + R1],

−→

1 0 −1 1 −2 0

0 1 1 0 1 0
0 0 1 1 −5 1


 [R′

1 = R1 − 2R2; R′
3 = R3 − 5R2],

−→

1 0 0 2 −7 1

0 1 0 −1 6 −1
0 0 1 1 −5 1


 [R′

1 = R1 + R3; R′
2 = R2 −R3].
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11.19. Example. Let A =
(

5 −3
−3 2

)
and B =


1 −4 2

3 −1 1
1 −2 1


. Compute A−1 and B−1

using row operations. Verify your answer both directly (by calculating AA−1 etc.) and
using the determinant formula.

Solution Computing with the augmented matrices(
5 −3 1 0
−3 2 0 1

)
−→

(
1 −3/5 1/5 0
0 1/5 3/.5 1

)
[R′

1 = R1/5;R′
2 = R2 + 3R′

1]

−→
(

1 0 2 3
0 1 3 5

)
[R′

2 = 5R2;R′
1 = R1 + 3R2/5].

11.20. Example. As a final example, we apply the same technique to the matrix in Equa-
tion 11.4 on page 109, and hence obtain the inverse.

Solution
> with(linalg):

> A:=matrix(3,3,[1,2,0,2,1,1,1,0,1]):A0:=concat(A,diag(1,1,1));

A0 :=


 1 2 0 1 0 0

2 1 1 0 1 0
1 0 1 0 0 1




> A1:=pivot(A0,1,1);

A1 :=


 1 2 0 1 0 0

0 −3 1 −2 1 0
0 −2 1 −1 0 1




> A2:=mulrow(A1,2,-1/3);

A2 :=




1 2 0 1 0 0

0 1
−1
3

2
3

−1
3

0

0 −2 1 −1 0 1




> A3:=pivot(A2,2,2);

A3 :=




1 0
2
3

−1
3

2
3

0

0 1
−1
3

2
3

−1
3

0

0 0
1
3

1
3

−2
3

1




> A4:=mulrow(A3,3,3);

A4 :=




1 0
2
3

−1
3

2
3

0

0 1
−1
3

2
3

−1
3

0

0 0 1 1 −2 3




> A5:=pivot(A4,3,3);
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A5 :=


 1 0 0 −1 2 −2

0 1 0 1 −1 1
0 0 1 1 −2 3
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Questions 2 (Hints and solutions start on page 163.)

11.2. Q. a) Define matrices A, B and C by

A =
(

1 −1
0 2

)
, B =


 0 1

1 1
−1 0


 , C =

(
0 2 −1

)
.

Calculate those of the following expressions that can be evaluated and explain why the
others cannot be:

A−1, AB, BA, CB, C−1. [5 marks]

b) What is the transpose, AT of a matrix A? Find all 2× 2 matrices A such that

A ·
(

1 0
0 −1

)
·AT =

(
0 0
0 0

)
. [5 marks]

c) By first using column operations involving subtracting the first column, find the

determinant of the matrix A =




1 1 1 1
1 1 + a 1 1
1 1 1 + b 1
1 1 1 1 + c


. [5 marks]

11.3. Q. a) Matrices A and B are defined by

A =
(−1 2

3 2

)
, B =


 4 −1

0 2
−2 1




and the transpose of B is written as BT. Calculate those of the following expressions that
can be evaluated and explain why the others cannot be evaluated:

A2, AB, BA, B−1, BTB. [5 marks]

b) Using row operations, compute the inverse of the matrix

A =


1 2 −1

2 3 1
1 1 1


 . [5 marks]
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11.4. Q. a) Define matrices A, B and C by

A =
(

0 −2 4
3 2 −1

)
, B =


−1

2
1


 , C =

(
1 2 0

)
.

Calculate those of the following expressions that can be evaluated and explain why the
others cannot:

AB, BA, det(AB), BC, (CB)−1. [5 marks]

b) What is the transpose, AT of a matrix A? Find all 2 × 2 matrices A =
(

a 0
c d

)
such that

A ·AT =
(

4 6
6 25

)
. [5 marks]

11.5. Q. a) Find all the values of λ for which

∣∣∣∣∣∣∣∣
1 1 0 1
1 0 1 0
0 1 0 1
1 0 1 1− λ

∣∣∣∣∣∣∣∣
= 0. [10 marks]

b) Consider the following system of equation, in which α is a real parameter.

x1 + x2 = 3,
2x1 + x2 + x3 = 7− α,

x1 + 2x2 + αx3 = 10.

By using row operations on the associated matrix, obtain a row-equivalent echelon form.

1. Find the value of α for which the system is inconsistent.

2. Solve the system in the case that α = 2, explaining carefully how you obtain the
solution from the echelon form.

[10 marks]

11.6. Q. a) Find the determinant of the matrix A =
(

2− λ 3
2 1− λ

)
where λ is a con-

stant. For what values of λ is A invertible? [4 marks]
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b) Consider the following system of equations, in which s and t are real parameters

x − 2y + z = 9,
2x − 3y − z = 4,
−x + (2 + t)y + 3z = s− 14t.

By using row operations on the associated matrix, obtain a row-equivalent triangular form
suitable for solution by back substitution.

1. Find the value of t for which the system either has no solution or does not have a
unique solution. How does the behaviour of the system depend on s in these cases?

2. Use back substitution to solve the system in the case that t = −1 and s = −5.

[11 marks]

11.7. Q. a) By first using column operations, including subtracting the first column from

other columns, find the determinant of the matrix A =




1 2 3 4
1 3 5 7
1 4 7 10
1 5 9 13


. [5 marks]

b) Consider the following system of equations in which t is a parameter.

x − y + z = 2,
4x − 5y + (t + 4)z = 9,
2x + ty − z = 5.

For what values of t does the system have (i) a unique solution, (ii) no solution, and (iii)
infinite number of solutions.

In case (iii), solve for x and y in terms of z. [10 marks]

11.8. Q. Use row - reduction of an augmented matrix to calculate the inverse of the matrix

A =


 1 6 2
−1 3 2
−2 −1 1


 .

[10 marks]

11.9. Q. Evaluate (x − y)(x2 + xy + y2) and simplify your answer. By using column
operations, show that∣∣∣∣∣∣

1 1 1
x y z

x3 y3 z3

∣∣∣∣∣∣ = k(x− y)(y − z)(z − x)(x + y + z)

where k is a constant that you should find. [10 marks]
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11.10. Q. Using row operations find the inverse of the matrix

A =


 1 −1 −1
−2 1 2
2 −1 −1


 .

Explain briefly in terms of elementary matrices why the method works. [10 marks]
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Chapter 12

Approximation and Taylor Series

12.1 Introduction

Approximations are very important in mathematics, particularly in its applications. There
are very many problems that we do not know how to solve exactly but for which it is
comparatively easy to get an approximate answer. These are not ideal from a purely
mathematical point of view but in practical work there is very little difference between
knowing that the answer to a problem is

√
2 and knowing that it is approximately 1.414214

to 6 decimal places.
For example, there are no formulas that will allow you to write down the exact solutions

of even such apparently simple equations as x8 + 3x5− 2x+ 1 = 0, sin x = x cos x, ex = 5x.
With these it is approximation or nothing.

There is a related problem that is just as important and which we will consider later.
How do you actually work out the values of functions like the trig functions or the expo-
nential? If you want to know e2.3 or sin 2.1 then you press a button on your calculator.
But how does the calculator know how to do it? In a strict sense it doesn’t. All it knows is
how to obtain the value to the level of accuracy required by the display of the calculator.
So this is once more an approximation problem.

12.2 Accuracy

Since we are going to be working a lot with approximations in this chapter I had better say
a thing or two about terminology.

I will often make statements like this: the solution to the equation is 4.453 to 3 decimal
places. What exactly does this mean? When I use such a statement I always mean that the
result has been rounded. In other words, I am saying that the true solution is somewhere
between 4.4525 and 4.4535. In other words the expression really refers to a range of
numbers rather than a specific number—don’t forget this.

For example, the number 23.342643 rounded to 3 decimal places is 23.343 and rounded
to 4 decimal places is 23.3426.

To get you more used to this idea let me try to do a simple calculation. Suppose I know
that x has the value 2.34 rounded to 2 decimal places and y has the value 0.23 rounded to
two decimal places. What can I say about the value of x/y? If I just plug the numbers
mindlessly into my calculator I get x/y = 10.173913.

127
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This is actually rubbish. Let me now do the calculation more carefully. All that we
know is that the value of x lies somewhere between 2.335 and 2.345 and that the value of
y lies somewhere between 0.225 and 0.235.

The biggest value that x/y could take is obtained by dividing the biggest possible value
of x by the smallest possible value of y. This gives 2.345/0.225 = 10.42222.

On the other hand, the smallest value that x/y could take is obtained by dividing the
smallest value that x can take by the biggest value that y can take. This gives 2.335/0.235 =
9.93617.

Anything between these two extremes is a possible value for x/y ! So we really do not
know very much about the value of x/y and the best that we can say in simple terms is
that x/y = 10, to zero decimal places. This is known as the problem of dividing by small
numbers and can be a pest.

12.3 Linear Approximation

x

a a+h

f(a+h)

f(a) + hf’(a)

Figure 12.1: Linear approximation

Recall the definition of the derivative of a function:

f ′(a) = lim
h→0

f(a + h)− f(a)
h

As h gets very small we would expect the value of
the Newton Quotient to give a good approximation
to the value of the derivative:

f ′(a) ≈ f(a + h)− f(a)
h

To get an idea of the accuracy look at the following
example where I am approximating the value of the
derivative of ex at x = 0. The correct answer is 1.
The Newton Quotient is

e0+h − e0

h
=

eh − 1
h

h Newton Quotient
0.1 1.0517
0.01 1.0050
0.001 1.0005

I am now going to look at this approximation from a rather different point of view.
Rather than regarding it as a way of approximating the value of the derivative I am going
to assume that we know the derivative and really want to find f(a + h). We can rearrange
our approximation as follows:

f(a + h) ≈ f(a) + hf ′(a) Linear Approximation

This now allows us to approximate the value of f(a + h), when h is small, in terms of the
values of f(a) and f ′(a).

The Fig. 12.1 shows you what the linear approximation is doing. It is estimating the
value of f(a + h) by assuming that, near to a, f(x) can be replaced by the straight line
through (a, f(a)) with slope f ′(a).
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12.1. Example. What, approximately, is
√

9.1?
Let us assume that we cannot cheat by using a square root button on our calculator!
The trick here is to notice that 9.1 is quite close to 9 and we certainly know

√
9 without

using a calculator. In other words, we can write 9.1 = 9+h, where h = 0.1. Let f(x) =
√

x.

Then f ′(x) =
1

2
√

x
. So the linear approximation formula becomes

√
x + h ≈ √

x +
h

2
√

x

This will be ‘true’ for any positive value of x so long as h is small enough. In our case we
want to put x = 9 and h = 0.1. Then we get

√
9.1 ≈

√
9 +

0.1
2
√

9
= 3 +

0.1
6

= 3.01667

The answer given by my calculator is
√

9.1 = 3.0166206. So our approximation is quite
reasonable. The error is 0.00005.

If we use the method to estimate
√

9.8 instead (h = 0.8) we get the answer 3.13333
compared to the correct answer 3.130495. Here the error is much greater. We are getting
to the limit of reasonable values of h.

The real problem with this method is that we have no way of knowing how accurate
the result is. I could only check the above example because I could get the ‘exact’ answer
from my calculator to compare with it. Estimation of accuracy is something that we will
have to consider later.

12.2. Example. What, approximately, is the value of sin 10◦?
We have to be a bit careful here and remember that all of our calculus work on the trig

functions has been done in radians. We had better convert at once. 10◦ is 0.17453 radians.
It is now more clear that we are dealing with a ‘small’ angle. Let’s try to use linear

approximation with f(x) = sin x, x = 0 and h = 0.17453. The derivative of sin x is cos x
(since we are now working in radians). So

sin 0.17453 = sinh ≈ sin 0 + h cos 0 = 0.17453

The true answer is 0.173648, to 6 decimal places. So we have a moderately good approx-
imation in this case.

Use the same method to approximate sin 5◦ for yourself. Then do cos 10◦.

12.3. Example. Show that if x is very small then
1 + x

1− x
≈ 1 + 2x.

This is a simple example of an important type of problem. We have a rather complicated
function and we want to know how it behaves near a certain point. We might be able to do
this by finding a much simpler function that is a good approximation to it near this point.

In this example the approximation allows us to estimate that a small change in the
(small) value of x will produce roughly double that change in the value of the function
(because of the 2x).

Now let me obtain the desired approximation. Let

f(x) =
1 + x

1− x
, then f ′(x) =

2
(1 + x)2
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Our linear approximation formula says that if h is very small then

f(0 + h) ≈ f(0) + hf ′(0)

In this case f(0) = 1 and f ′(0) = 2. So the linear approximation becomes

1 + h

1− h
≈ 1 + 2h

Changing notation by writing x for h gives us the answer that we wanted.
Let’s experiment with this approximation, to find out how good it is.

x 1 + 2x f(x) error
0.2 1.4 1.5 0.1
0.1 1.2 1.22222 0.02222
0.05 1.1 1.10526 0.00526
0.01 1.02 1.02020 0.00020

These results are not untypical. The linear approximation is usually quite rough unless
h is very small indeed.

12.3.1 Small Changes

As you have seen above, the linear approximation gives us a way of finding, approximately,
the effect on f(x) of a small change in x.

All that I am going to do in this section is change notation.
We often write δx for a small change in x and δf for the corresponding change in f(x).

The linear approximation says

f(x + δx) ≈ f(x) + δxf ′(x)

or, even more simply,
δf = δxf ′(x)

or, for y = y(x),

δy =
dy

dx
δx

Get used to recognising the linear approximation in these various forms. They are all the
same—it is only the notation that is different.

12.4. Example. A surveyor wants to measure the distance AB (see Fig 12.2). He does this
by moving out distance 100m to C and measuring the angle ACB. He finds that the angle
is 70◦, but his apparatus is only capable of measuring angles to the nearest degree. How
accurately can he find the distance AB?

If the angle measured is θ then the distance AB is d(θ) = 100 tan θ. With θ = 70◦ this
gives AB = 274.75m. But we know that the ‘real’ angle could have been anywhere between
69.5◦ and 70.5◦. How might this affect the answer?

If we use the first approximation we get δd ≈ 100 sec2 θδθ (θ in radians!). In this case
θ = 1.22173 and δθ is one half of a degree or, in radians, δθ = 0.008727.
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 θ
BA

C
100

Figure 12.2: A Surveyor measuring distance

So δd ≈ 100 sec2(1.22173) × 0.008727 = 7.460. So the surveyor really ought to quote
his result for the distance as d = 274.75 ± 7.46 or, to be more reasonable and honest,
d = 275 ± 8m. The half degree error in the angle has produced a quite significant error in
the distance.

Let’s check our answer by working with the exact formula. What are the actual values
of d(69.5◦), d(70◦) and d(70.5◦)? Just plug in the numbers and get the answers 267.5,
274.75 and 282.4 respectively. This fit quite nicely with our approximation.

12.4 Solving Equations—Approximately

As I said above, solving equations is a very important process in mathematics and its
applications. Indeed, at an elementary level mathematics is almost identified with ‘solving
equations’.

There are very few kinds of equations for which we know how to write down the ‘exact’
solution. For the majority of equations that arise in the applications of mathematics the best
we can hope for is an approximation to a solution. For this reason the problem of finding
approximations to the solutions of equations is a very important branch of mathematics.

In this section I am just going to look at one method—in practice the most important one
(in the form I give it and in its generalisations). The method was invented by Newton soon
after he invented the calculus and is basically an application of the Linear Approximation.

x

a*

s

Figure 12.3: The tangent helps find
where the curve cuts the axis.

The basic idea is quite simple. Suppose that we
are trying to find a solution of the equation f(x) = 0.
Suppose that we are able to make a reasonably good
guess at the answer, say x = a. In other words we
are claiming that there is a solution to f(x) = 0 quite
near to x = a. Suppose that we write the solution
as s = a + h where our assumption is that h is quite
small. Then, using the linear approximation, we say

0 = f(s) = f(a + h) ≈ f(a) + hf ′(a).

The thing that we don’t know is h. So we ‘solve’ this
equation for h to get

h ≈ − f(a)
f ′(a)

We cannot say that a + h is the required solution, because we are only working with
an approximation, but we can reasonably hope that a + h is a better approximation to the
solution than a was. So this is really a process for trading in an approximation for a better
one.
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The process can be shown geometrically as follows. The graph of f(x) is being ‘replaced’
by the graph of the tangent at (a, f(a)). We then find where the tangent cuts the x-axis.
If the picture is to be believed, this will give us a point much closer to the solution x = s
than a was.

We do not stop there. We start again, taking the new approximation as our starting
point, and use the method to produce an even better approximation. This process can
be repeated over and over again, producing (we hope) a sequence of steadily improving
approximations. Indeed, it seems that if we keep going for ever then we will achieve the
true solution as the limiting case of our sequence of approximations. In practice we just
repeat the process often enough to get the solution to the level of accuracy that we happen
to want.

12.4.1 Newton’s Method

Let me now gather together the arguments of the previous section into an explicit method.
It is called the Newton (or Newton-Raphson) method.

We want to find an approximation to a solution of the equation f(x) = 0. We know
that x = x0 is a reasonable approximation to the required answer.

Form a sequence {x1, x2, . . . , xn, . . . } of approximations by the following scheme:

xn+1 = xn + hn where hn = − f(xn)
f ′(xn)

Continue the process until the ‘corrections’ hn get so small that you are happy to accept
that you have obtained the required solution to the accuracy that you want.

You should usually find that if you are fairly close to the answer the number of correct
decimal places will just about double at each stage of the process. The method has quadratic
convergence, except in certain special cases.

It is possible that the method will fail. It may do so, very occasionally, because the
function is unsuitable or it may be that your initial guess is too unreasonable. Failure will
usually show itself by the fact that the hn do not shrink rapidly. One particular problem,
which is not really a failure but can be a nuisance, is where the derivative of the function
is zero at the point where the function becomes zero—the graph touches the x-axis rather
than cutting it. In this situation you should get convergence to the solution, but it will be
very slow.

12.5. Example. Find the solution to x = cos x that lies between x = 0 and x = π/2. Give
the answer to 4 decimal places. (x is in radians.)

If we draw the graphs of y = x and y = cos x on the same axes we can see that there
is going to be a single solution (where the graphs cross) in the given range and that it is
probably somewhere near π/4. I will take x0 = 1 as my first guess at the solution. Don’t
waste effort trying to find a very good first approximation.

The next important point is that Newton’s method works for equations of the form
f(x) = 0—i.e. it is a way of finding where graphs cut the x-axis. Our equation has to be
put into this form before we go any further. There are lots of ways to do this. I will use
the most obvious, which is to let f(x) = x− cos x.

We now need the derivative of f(x) which is f ′(x) = 1 + sinx.
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Now we are ready to calculate. The calculation scheme is:

xn+1 = xn + hn where hn = − f(xn)
f ′(xn)

=
xn − cos xn

1 + sin xn

and we are starting with x0 = 1.
So

h0 = −(1− cos 1)/(1 + sin 1) = 0.249636 x1 = x0 + h0 = 0.750364.

Do it again,

h1 = −(x1 − cos x1)/(1 + sin x1) = 0.011251 x2 = x1 + h1 = 0.739113.

And again,

h2 = −(x2 − cos x2)/(1 + sin x2) = 0.000028 x3 = x2 + h2 = 0.739085.

Notice that h is beginning to get quite small and the value of x is not changing very much
from one step to the next. Let’s do another round:

h3 = −(x3 − cos x3)/(1 + sin x3) = 1.8 × 10−10 x4 = x3 + h3 = 0.739085.

h really has become very small indeed. Notice that, to 6 decimal places, our approximation
did not change at all on the last step. If you go round once more you will find that h has
become even more dramatically small—in fact your calculator will probably give it as 0.

Since we only wanted to know the answer to 4 decimal places we can reasonably stop
at this point and claim that the required solution is s = 0.7391, to 4 decimal places. This
is actually correct.

In practice it is usually convenient, when doing the calculations on paper rather than
on a computer, to lay out your results in the form of a table:

n xn −hn

0 1.000000 0.249636
1 0.750364 0.011251
2 0.739113 0.000028
3 0.739085 1.8 × 10−10

4 0.739085

This makes it easy to see what is happening. Note that I have done all the calculations
to 6 decimal places. It is usually wise to do the calculations to one or two places more than
you want for the eventual answer.
12.6. Example. Find

√
90 to 5 decimal places.

What has this go to do with solving equations? Well, we can recast the question as:
find the positive solution to the equation x2 = 90. Now we are solving equations.

We will use the Newton method with f(x) = x2− 90. What will we take as first guess?
The answer is somewhere between 9 and 10 and probably closer to 9 than to 10. Without
thinking much harder about it let’s take x0 = 9.4.

The derivative is f ′(x) = 2x and our scheme becomes

xn+1 = xn + hn where hn = −x2
n − 90
2xn

You can check that you agree with the following numbers.



134 CHAPTER 12. APPROXIMATION AND TAYLOR SERIES

n xn hn

0 9.400000 0.087234
1 9.487234 -0.000401
2 9.486833 -8.5 × 10−9

3 9.486833

So we would expect that the solution, to 5 decimal places, is
√

90 = 9.48683.
Perhaps it is worth, for once, checking our answer. We have to be a bit careful how we

do this. The fact that 9.486832 = 89.999943 does not, in itself, prove anything. A better
argument goes as follows. By saying that the answer is 9.48683 to 5 decimal places we are
really saying that the answer is somewhere between a = 9.486825 and b = 9.486835. Now
a2 = 89.99985 and b2 = 90.000038. We know that x2 increases as x increases, so we were
right in claiming that

√
90 had to lie between a and b. So our answer is correct.

12.7. Example. Solve the equation 2x3 + 3x2 − 6x− 4 = 0, giving the results to 4 decimal
places.

The real problem that we face here is that an equation like this may have more than
one solution. We will have to cope with this problem when we come to it.

Let f(x) = 2x3 + 3x2 − 6x − 4. We start to experiment a bit. f(0) = −4, f(1) = −5,
f(2) = 12. Ah! so there is an answer between 1 and 2. f(1.5) = 0.5, so there is an answer
between 1 and 1.5 and it is probably closer to 1.5 than to 1. Let us now use the Newton
method to find this solution. We may as well take x0 = 1.5 as our first guess.

The derivative is f ′(x) = 6x2 + 6x− 6, so the Newton scheme is

xn+1 = xn + hn where hn = −2x3
n + 3x2

n − 6xn − 4
6x2

n + 6xn − 6

You should check the values in the following table.

n xn −hn

0 1.500000 -0.030303
1 1.469697 -0.000695
2 1.469002 −3.6× 10−7

3 1.469002 −6.3× 10−11

We can now be confident that one solution, to 4 decimal places, is x = 1.4690.
That is not the end of the problem. There may well be other solutions. For example,

f(−3) = −13 and f(−2) = 4. So there is certainly another solution between −3 and −2.
You can, if you like, go chasing around looking for other possibilities and then using Newton
on each one in turn. It is a relief to know that a cubic equation cannot have more than 3
solutions!

Another approach is to use a basic fact about polynomials. If x = a is a solution of the
polynomial equation p(x) = 0 then (x− a) is a factor of p(x). In our case (x − 1.4690) is,
approximately, a factor of f(x). So we can divide out the factor. This will leave us with
a quadratic, which we can solve by the usual formula without bothering with Newton’s
method. I will not go any further with this.

It turns out that our equation has three solutions and they are, to 1 decimal place,
−2.4, −0.6 and 1.5. Use Newton’s method yourself to improve these results to 4 decimal
places
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12.8. Example. To give you some idea of the rate of convergence of the method let me do a
calculation to a large number of decimal places (I’ve got software for doing this—you can’t
really do it on your calculator). Consider the equation x3 − 3x + 1 = 0. It has a solution
between 0 and 1 as you can easily see. Find it.

The result of using Newton on this problem, with x0 = 1.5 and the calculations taken
to 50 decimal places, is

n xn

0 1.5000000000000000000000000000000000000000000000000
1 1.5333333333333333333333333333333333333333333333333
2 1.5320906432748538011695906432748538011695906432749
3 1.5320888862414666691024170140560915916262702002099
4 1.5320888862379560704047993157913546008732037569433
5 1.5320888862379560704047853011108333478716649143841
6 1.5320888862379560704047853011108333478716649141608

The underlined figures are the correct figures. We have got 46 accurate decimal places
by the fifth iteration!

12.5 Higher Approximations

The basic idea behind the linear approximation was that the tangent line to a graph at
a point stays reasonably close to the graph near to that point. You can also think of the
linear approximation to f(x) at x = a as being the straight line that goes through (a, f(a))
and has the same slope at this point as f(x). It happens that this slope is given by the
derivative—hence our formula.

12.5.1 Second Approximation

Having got the idea we might think to improve it a bit by replacing the straight line
(y = ax + b) by a quadratic curve y = px2 + qx + r. This gives us three parameters to play
with and might allow us to get a better ‘fit’ to the graph of f(x).

Which quadratic do we use? As before, and using the same notation, we would want the
quadratic to go through (a, f(a)) and to have the same slope as f(x) at this point. That
fixes the values of two of the coefficients but still leaves us with one to play with. Suppose
we also ask that the quadratic should have the same second derivative at the point as f(x).
This now fixes the value of all three coefficients.

It isn’t hard to see what that means. Write g(x) = p(x−a)2+q(x−a)+r. We want f(x)
and g(x) to have the same value, the same first derivative and the same second derivative
at a. Now

g(x) = p(x− a)2 + q(x− a) + r, g(a) = r = f(a),
g′(x) = 2p(x− a) + q, g′(a) = q = f ′(a),
g′′(x) = 2p, g′′(a) = 2p = f ′′(a).

Thus our approximating quadratic is

g(x) = f(a) + (x− a)f ′(a) +
1
2
(x− a)2f ′′(a)
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and we can write down an approximation which is called the Second Approximation
(the Linear Approximation is often called the First Approximation).

f(a + h) ≈ f(a) + hf ′(a) +
1
2
h2f ′′(a).

Notice that the first two terms are exactly the same as for the linear approximation. We
have only added a ‘correction term’ on the end.

To compare the accuracy of the linear and second approximations let me do some
calculations to evaluate ex for small values of x. The first and second derivatives of ex at
x = 0 are both 1. So, for small values of h, the two approximations are

eh ≈ 1 + h First Approximation

eh ≈ 1 + h +
1
2
h2 Second Approximation

h First Second Exact
0.2 1.2 1.22000 1.22140
0.1 1.1 1.10500 1.10517
0.05 1.05 1.05125 1.05127

You can see that the second approximation performs much better than the first.

12.9. Example. Use the second approximation to estimate the value of
√

9.8.
We have already used the first approximation and got the result 3.13333.
To use the second approximation we need the second derivative of f(x) =

√
x. This is

f ′′(x) = −1
4x−3/2. So f ′′(9) = −1/108. The second approximation therefore gives

√
9.8 = f(9 + 0.8) ≈ 3 +

0.8
6
− 0.82

216
= 3.13037

which compares quite favourably with the correct result
√

9.8 = 3.130495 (given to 6
decimal places).

12.5.2 Higher Approximations

This argument can be carried further. We can look for approximations that use higher and
higher degrees of polynomials. To cut a long story short let me just give you the answers.

The successive approximations to the value of f(x) near x = a are

f(a + h) ≈ f(a) + hf ′(a)

≈ f(a) + hf ′(a) +
h2

2!
f ′′(a)

≈ f(a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f ′′′(a)

≈ f(a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f ′′′(a) +

h4

4!
f iv(a)

≈ f(a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f ′′′(a) +

h4

4!
f iv(a) +

h5

5!
f v(a)
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and so on. The pattern is simple. Each approximation differs from the previous one by
the addition of one further correction term. All the correction terms have the same form.
Note that n! stands for the ‘factorial’ of n, i.e. the product of all the numbers up to n, so
5! = 5.4.3.2.1 = 120.

Following the above pattern we get the nth approximation as

f(a + h) ≈ f(a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f ′′′(a) + · · ·+ hn

n!
f (n)(a).

As you would expect, these approximations tend to get better and better as you take
more terms. To give you some idea of their behaviour here are the first few approximations
to the value of e1 obtained by taking f(x) = ex, a = 0 and h = 1:

order approx
1 2.0000000
2 2.5000000
3 2.6666667
4 2.7083333
5 2.7166667
6 2.7180556
7 2.7182540
8 2.7182788
9 2.7182815
10 2.7182818

exact 2.7182818

So, by the time we have got to the 10th approximation we have got the value accurate
to at least 7 decimal places—though the earlier approximations are pretty hopeless.
12.10. Example. By using the fourth approximation show that if x is small then

cos x ≈ 1− 1
2
x2 +

1
24

x4

We are told that x is small. So we should take our approximation about a = 0. To get
the fourth approximation we need the first four derivatives of f(x) = cos x. This is easy:
f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x and f iv(x) = cos x. We now evaluate these
at x = 0 to get f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0 and f iv(0) = 1. So the fourth
approximation is

f(0 + h) ≈ f(0) + hf ′(0) +
h2

2
f ′′(0) +

h3

3!
f ′′′(0) +

h4

4!
f iv(0)

≈ 1 + 0− h2

2
+ 0 +

h4

24

≈ 1− 1
2
h2 +

1
24

h4

So, replacing h by x (just a change of notation), we get the required result:

cos x ≈ 1− 1
2
x2 +

1
24

x4 if x small
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12.6 Taylor Series

I have now got to try to answer the question that I asked at the start of the chapter. How
do we actually evaluate functions like ex or sinx? Note that all we usually want is the value
to a certain accuracy. The successive approximations in the previous section have shown
us a way to approach this problem and we will follow it up in this section.

12.6.1 Infinite Series

Before doing the real work of this section I need to tell you a little bit about infinite series.
A finite series is just the sum of a finite number of terms

s = a1 + a2 + a3 + · · · + an

An infinite series is the sum of an infinite number of terms

s = a1 + a2 + a3 + · · ·+ an + · · ·

(we usually use · · · at the end of a series to indicate that it goes on for ever).
What do we mean by ‘the sum of an infinite series’. You know how to add up a finite

number of terms, so the sum of a finite series is no problem. But how on earth do we
propose to add up an infinite number of terms? It took mathematicians a long time to sort
out their ideas on this. The definition that we use goes as follows. Call the sum of the first
n terms of the series sn (called the nth partial sum). So

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

s4 = a1 + a2 + a3 + a4

and so on. If this infinite sequence of values s1, s2, s3, . . . tends to a limiting value than that
value is called the sum of the infinite series, and we say that the infinite series converges.

If the sequence of partial sums does not tend to a limiting value then we say that the
infinite series diverges and we do not give a sum for it. Here are two simple examples of
infinite series that ‘do not add up’:

1 + 2 + 3 + 4 + 5 + · · ·+ n + · · ·

1− 1 + 1− 1 + 1− 1 + 1− 1 + · · ·
The first one is divergent because the partial sums are steadily increasing towards infinity
and do not tend to a finite limiting value. You might get away with saying that the sum of
the infinite series is infinite, but that is not really very helpful.

The second one is more interesting. The partial sums are 1, 0, 1, 0, 1, 0, 1, . . . . This
sequence is not going off to infinity, but it is not tending to a limiting value either. So
the series does not have a sum. (You will never believe the tangles that 18th century
mathematicians got into with this series. They managed to produce all sorts of arguments
to claim that the series actually added up to 1

2—a sort of ‘average’ of the partial sums.)
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12.6.2 Geometric Series

This is an example that you may already know something about. We have a formula for
the sum of a simple finite geometrical series:

1 + x + x2 + x3 + x4 + · · ·+ xn =
xn+1 − 1

x− 1

(if x 6= 1). Look up the proof of this if you do not know it already.
What about the infinite geometrical series?

1 + x + x2 + x3 + x4 + · · · + xn + · · ·
According to our definition the sum of this series is the limiting value of its partial sums,
if they have a limiting value. We already have a formula for the nth partial sum:

sn =
xn+1 − 1

x− 1

The question is: what happens to this as n →∞? The answer depends very much on the
value of x. The only bit of the formula that depends on n is the xn+1 in the numerator.

If x > 1 then xn+1 tends to infinity as n →∞, so the partial sums also tend to infinity.
So the series is divergent and does not have a sum.

If x < −1 then the situation is even worse in a sense. Not only are the partial sums
getting bigger and bigger, they are also switching sign. Certainly divergent.

If −1 < x < 1 then xn+1 → 0 as n → ∞ because the successive powers of a number
between −1 and 1 get closer and closer to zero. So in this case our formula for the partial
sums does tend to a finite limiting value as n → ∞. So the infinite geometrical series is
convergent in this case and has the sum

1 + x + x2 + x3 + · · ·+ xn + · · · = 1
1− x

The remaining two possibilities are x = 1 and x = −1. I leave it to you to see that the
series does not converge in either of these cases.

The end result is that the infinite geometric series given above only converges (has a
sum) if −1 < x < 1.

12.6.3 Taylor Series

I have shown you a sequence of approximations to the value of a function. It is usually the
case that the higher the approximation you use the more accurate a result you get (not
always true). Some of the numerical evidence given above demonstrates this.

This opens up the possibility that if we imagine the sequence of successive approxima-
tions going on for ever then the error will eventually dwindle away to nothing and, in the
limiting case, we will not have an approximation but will get the exact result.

For elementary functions this is usually true, at least for some values of a and h.
The resulting infinite series is called the Taylor Series of the function f(x) expanded

about the point a. If it converges to the value of the function we get

f(a + h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · · + hn

n!
f (n)(a) + · · ·
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If a = 0 then the series is known as the Maclaurin Series of the function f , which we
might write as:

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·+ xn

n!
f (n)(0) + · · ·

Taylor (and Maclaurin) series are tremendously important in many areas of mathemat-
ics. They are often used to define functions.

12.11. Example. What is the Maclaurin series of f(x) = ex?
To write down the Maclaurin series we need to know the value at x = 0 of every

derivative of the function. This is usually the practical problem that we face in working
out Taylor series. In this case it is easy since every derivative of ex is ex and this has value
1 at x = 0. So the Maclaurin series becomes

1 + x.1 +
x2

2!
.1 + · · ·+ xn

n!
.1 + · · ·

It turns out that this is actually equal to the value of ex for any value of x (I cannot prove
that here). So we have the famous result that

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ · · ·

You will often find this given as the definition of ex.

12.12. Example. What are the Maclaurin series of sin x and cos x?
This is another case where it is reasonably easy to work out the values of all the

derivatives at x = 0. The first few derivatives of sinx are

cos x, − sin x, − cos x, sin x, cos x

and so on. You can see that they go round and round in a cycle of four. The values of sin x
and its derivatives at x = 0 are therefore

0, 1, 0, −1, 0, 1, 0

and so on.
It turns out that the Maclaurin series of sin x is valid for all values of x. So we have

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

Using the same results you can show that the Maclaurin series of cos x, which is also
valid for all values of x is

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

12.13. Example. Find the value of sin 1.23 to 6 decimal places.
Put x = 1.23 into the Maclaurin series for sin x and start adding up terms. Carry on

doing this until the terms being added on ‘obviously’ don’t affect the answer to 6 decimal
places. Stop there.



12.6. TAYLOR SERIES 141

Term value sum so far
x +1.23 1.23

−x3/3! -0.31014450 0.9198555
x5/5! +0.02346088 0.9433164
−x7/7! -0.00084509 0.9424713
x9/9! +0.00001776 0.9424890

−x11/11! -0.00000024 0.9424888
x13/13! +0.00000000 0.9424888

Which gives us sin 1.23 = 0.942489 to 6 decimal places (and is correct).

Note that this is a slightly dangerous game and is not quite like what was happening
with the Newton method. By stopping the calculation early I have missed out an infinite
number of terms (because the series goes on for ever). The individual terms are certainly
getting very small, but an awful lot of very small terms can add up to something enormous.
You do need to be a bit careful—especially if the terms are getting small quite slowly.

As a warning, consider the infinite series

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

+ · · ·

The individual terms in this series are tending to zero, yet it can be shown that this series
is divergent. If you add up enough of the terms you can get a sum as big as you like!

12.14. Example. A Maclaurin series for the logarithm.
Here we have to be a bit careful. ln x is not defined at x = 0, so there is no hope of a

Maclaurin series for ln x.
Instead, it is usual to look at the Maclaurin series of f(x) = ln(1 + x) (or the Taylor

series of ln x expanded about x = 1 if you prefer).
The first few derivatives are:

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, f ′′′(x) =

2
(1 + x)3

You can probably see the pattern beginning to develop. The nth derivative is

f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n
, f (n)(0) = (−1)n−1(n− 1)!

The Maclaurin series now becomes

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

This is not valid for all values of x. Obviously it does not make sense for x ≤ −1 because
the logarithm is not defined for negative values. Less obviously, it does not work for x > 1
either. The Maclaurin series for ln(1 + x) is only valid for −1 < x ≤ 1.
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12.6.4 The Binomial Series

As I have said, it is difficult to work out Taylor series for functions if we do not have an
easy way to work out all the derivatives of the function. That is why I did not try to work
out the Maclaurin series for tan x—just you try to work out the 20th derivative of tan x.

One more class of functions that we can cope with are those of the form f(x) = (1+x)a.
If we work out the first few derivatives we get

f ′(x) = a(1 + x)a−1, f ′′(x) = a(a− 1)(1 + x)a−2,

f ′′′(x) = a(a− 1)(a − 2)(1 + x)a−3

The pattern is obvious and there is no problem in writing down the general derivative.
Notice that if a is a positive whole number the derivatives are eventually all zero. This

is not true if a is any other number (apart from a = 0).
We now have the Maclaurin series

(1 + x)a = 1 + ax +
a(a− 1)

2!
x2 +

a(a− 1)(a − 2)
3!

x3 +
a(a− 1)(a− 2)(a− 3)

4!
x4 + · · ·

If a is not a non-negative integer then this expansion is only valid for −1 < x < 1.
This expansion is called the Binomial Series.
Putting a = −1 we get the special case

1
1 + x

= 1− x + x2 − x3 + x4 − x5 + · · ·

which is just the usual geometric series.
Putting a = 1

2 we get

√
1 + x = 1 +

1
2
x− 1

8
x2 +

1
16

x3 − 5
128

x4 +
7

256
x5 − · · ·



Chapter 13

Differential Equations

This is a very brief introduction to a very important topic. If you meet mathematics again
after this year then you will probably meet differential equations again as well.

13.1 Introduction

A differential equation is an equation for an unknown function, say y(x), which involves
derivatives of the function.

For example

dy

dx
= x, y′′ − 3y′ + 2y = sin x,

y′′′ − y′

y2
= x + y′

The order of a differential equation is the order of the highest derivative occurring in
it. In the above examples the orders are 1,2,3.

[Technically, these are known as Ordinary Differential Equations (odes) because the
unknown function is a function of one variable. Differential equations involving functions
of several variables and their partial derivatives are called Partial Differential Equations
(pdes).]

Many laws in science and engineering are statements about the relationship between a
quantity and the way in which it changes. The change is often measured by a derivative
and therefore the mathematical expression of these laws tends to be in terms of differential
equations. Our earlier example of Malthus’ Law was a case in point.

Given a differential equation the obvious reaction is to try to solve it for the unknown
function. As with integrals, and for much the same reason, this is easier said than done. In
this chapter I will have a quick look at one very simple class of differential equations. The
aim is to give you some feel for the way in which differential equations behave.

Consider the differential equation y′′(x) = x, where the dash denotes differentiation wrt
x. Integrating both sides of this equation wrt x we get

y′ =
1
2
x2 + C

where C is an arbitrary constant of integration. This is one place where it is crucially
important to include the constant of integration!
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Now integrate once more and get

y =
1
6
x3 + Cx + D

where D is a further constant of integration.
We now have the General Solution of the differential equation with arbitrary constants

C and D. Note that this is really an infinite class of solutions. If we give C and D particular
values then we get a Particular Solution. For example, y = x3/6+x and y = x3/6+2x−3
are particular solutions of the equation.

The values of the arbitrary constants that we almost invariably acquire when solving
a differential equation are usually determined by giving conditions that the solution is
required to satisfy. The most common kind of conditions are Initial Conditions, where
the values of y and some of its derivatives are given for a specific value of x.

13.1. Example. Find the solution to y′′ = x then satisfies y(0) = 1 and y′(0) = 0.
We know that the general solution is

y =
1
6
x3 + Cx + D

The condition y(0) = 1 says that 1 = 0 + 0 + D, so D = 1. The condition y′(0) = 0 says
that 0 = 0 + C, so C = 0. So the required solution is

y =
1
6
x3 + 1

Note that an equation of order n generally requires n integrations to get the general
solution, so the general solution can be expected to contain n unknown constants and you
would expect to have to give n conditions to fix these constants.

Those of you who know some physics will know that Newton’s law of motion relates
acceleration (second derivative) to force (which is usually a function of position and time).
This yields a second order differential equation. In the simple case of a particle moving in a
straight line the general solution should contain two constants of integration. A particular
solution can be specified by giving the initial position and velocity of the particle, and this
corresponds well with our physical intuition.

13.2. Example. I drop a stone from height H above the ground. It falls under gravity and
there is no air-resistance. When does it hit the ground?

Measure x vertically upwards from the ground. Let x(t) be the height of the stone
above the ground at time t. Suppose that the particle is dropped at time t = 0.

Physics tells us that x(t) satisfies the differential equation

ẍ = −g where g is a constant

Our Initial Conditions are that x(0) = H and that ẋ(0) = 0.
Integrating the equation gives ẋ = −gt + C and integrating once more gives

x(t) = −gt2

2
+ Ct + D

—this is the general solution.
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The condition x(0) = H says that D = H and the condition ẋ(0) = 0, applied to the
previous equation, says that C = 0. So the required solution is

x(t) = −gt2

2
+ H

The stone hits the ground when x = 0. This happens when

H =
1
2
gt2 or t =

√
2H
g

13.2 Separable Equations

This is the only class of differential equations that I am going to treat in general.
A differential equation is said to be separable if it can be manipulated into the form

f(y)
dy

dx
= g(x)

You can, in principle, solve this equation by integrating both sides with respect to x. You
get ∫

f(y) dy =
∫

g(x) dx + C

It may not be possible to express y simply in terms of x.
The following are examples of separable equations

y2 dy

dx
= x + 1, ev dv

du
= 2u, (1 + y)

dy

dx
= 1

So are the following, though they need some rearrangement:

x2 dy
dx = ey → e−y dy

dx = 1
x2

dy
dx = 1+x

1+y → (1 + y)dy
dx = 1 + x

xy′ = 1+x
1+y → (1 + y)y′ = 1 + 1/x

Let’s do some examples.

13.3. Example. yy′ = x2

This equation rearranges to give∫
y dy =

∫
x2 dx + C or

1
2
y2 =

1
3
x3 + C

The explicit solution comes in two cases

y(x) =

√
2
3
x3 + 2C and y(x) = −

√
2
3
x3 + 2C

(Notice that this example shows that the solution of a differential equation may not exist
for all values of x. In this case there will be values of x for which the term under the square
root is negative.)
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13.4. Example. y′ = eyx

This can be rewritten as e−yy′ = x and gives∫
e−y dy =

∫
x dx + C or − e−y =

1
2
x2 + C

The explicit solution is then

y(x) = − ln(−C − 1
2
x2)

There are values of C for which this solution does not exist. Note that C cannot be allowed
to be positive.

13.5. Example.
dy

dx
=

x + 1
y + 1

This can be rewritten as (y + 1)y′ = x + 1. So integrating it we get

1
2
(y + 1)2 =

1
2
(x + 1)2 + C

13.2.1 The Malthus Equation

Let us go back to the population model that we developed in the section on the exponential
function.

dP

dt
= kP, P (0) = P0

where k is a constant.
This is a separable equation and we can rearrange it to get∫

dP

P
=
∫

k dt + C

or
ln |P | = kt + C

Exponentiate both sides and get
P (t) = ±eCekt

now impose the initial condition P (0) = P0 and get the result

P (t) = P0e
kt

13.3 Generalities

Even the simple examples that we have done so far highlight most of the basic points about
the behaviour of differential equations.

1. Since the process of solving a differential equation involves integration so as to get rid
of the derivatives we always acquire arbitrary constants in our solution. This means
that, in general, differential equations have infinitely many solutions.
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2. An expression for the arbitrary solution of a differential equation, involving all the
unknown constants of integration, is called the General Solution to the equation.
A solution that you obtain by giving values to the constants of integration is called a
Particular Solution. For example, the General Solution to the differential equation
y′ = x is y(x) = 1

2x2 + C. The functions y(x) = 1
2x2 (C = 0) and y(x) = 1

2x2 + 2
(C = 2) are Particular Solutions.

3. We haven’t done many higher-order equations yet but, as you will realise, an equation
of order n contains an nth order derivative of the unknown function y that has to
be reduced down to y. This requires n integrations. Each integration produces a
constant of integration. So, in general, the general solution to an equation of order n
will involve n unknown constants.

4. To obtain a particular solution from a general solution we need to be told something
about the required solution in order to fix the values of the constants of integration.
A fairly standard approach to this, very common in dynamics, is to give information
about the solution and its derivatives at a particular value of x. This is called, for
historical and practical reasons, specifying Initial Values for the problem.

5. There are lots of other ways to determine a particular solution. Sometimes it is done,
for second order equations, by giving the value of y at two different values of x. This
is called giving Boundary Values for the problem.

13.4 Linear First-Order Equations

13.6. Example. Solve the differential equation

x
dy

dx
+ y =

1
x

.

Solution This may be a first order equation, but the variables aren’t separable. But we
notice something about the left hand side. The differential equation can be rewritten as

d

dx
(xy) = x2

and we can then set about integrating both sides of the equation. We get

∫
d

dx
(xy) dx =

∫
x2 dx + C, so xy =

x3

3
+ C.

and the required solution is

These are differential equations of the form

a(t)
dx

dt
+ b(t)x = c(t) (13.1)

They can always be solved, in principle, by a method known as the Integrating Factor
Method.
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If we start by dividing through by a(t) we can simplify the equation down to

ẋ + β(t)x = γ(t) (13.2)

Now, suppose we can find a function f(t) such that

ḟ = β(t)f (13.3)

Multiply both sides of (13.2) by f and get

fγ = fẋ + βfx = fẋ + ḟx =
d

dt
(f.x)

as a consequence of the rule for differentiating a product.
We can now integrate and get

x =
1
f

∫
fγ dt

The only remaining problem is to find an f to satisfy (13.3). But (13.3) is just an ordinary
separable equation and we get the solution

ln f =
∫

β dt

Let me do one or two examples to show you that it is easy (in principle).
Consider the equation tẋ + 2x = 1. If we multiply through by t we get

t = t2ẋ + 2tx =
d

dt
(t2x)

So, integrating,

t2x =
1
2
t2 + C so x(t) =

1
2

+ fracCt2

Now consider the equation ẋ + tx = t. In this case β = t, so

f = exp(
∫

β dt) = exp(
t2

2
)

(Note that we don’t have to bother with a constant of integration because we are just
looking for something which satisfies (13.3).)

Multiplying through by f our equation becomes

et2/2ẋ + tet2/2x = tet2/2

or
d

dt
(et2/2x) = tet2/2

Integrate and get

et2/2x =
∫

tet2/2 dt = et2/2 + C

So the solution is
x(t) = 1 + Ce−t2/2
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One more example for luck. Consider the equation ẋ + sin(t)x = cos(t). Here we have
β(t) = sin(t) and we get f by

ln f =
∫

β dt = − cos(t) so f = e− cos t

Multiply through the equation by f and get

fẋ + f sin(t)x =
d

dt
(fx) = cos(t)e− cos t

Thus
e− cos tx =

∫
cos(t)e− cos t dt + C

and
x(t) = ecos t

∫
cos(t)e− cos(t) dt + Cecos t

Unfortunately, as often happens when using this method, I don’t think that this integral
can be done (prove me wrong if you can).

13.5 Linear Differential Equations

Solving general differential equations is complicated and can usually only be done numer-
ically; certainly it is way beyond the scope of this course. Even if we restrict to a very
special case; that of a linear differential equation with constant coefficients in which
we restrict to equations of the form

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ . . . + a2

d2y

dx2
+ a1

dy

dx
+ a0y = q(x)

with each of an, . . . , a0 constant, rather than a function of x, we still have to work quite
hard. However, the particular case in which n = 2, so we are dealing with a second order
occurs a lot in mechanics and electronics and you should know something about how to
solve it.

A differential equation of the form

a
d2y

dx2
+ b

dy

dx
+ cy = q(x)

where a, b, c are constants and q(x) is a function of x is called a second order linear differ-
ential equation with constant coefficients. Snappy title, eh?

If q(x) is replaced by 0, you add the word homogeneous in front of “second”. Otherwise
such an equation is known as inhomogeneous.

The homogeneous case is significantly simpler and helps us with the general case, so we
start by concentrating on the homogeneous case; the one in which the right hand side of
the equation is 0. Thus we are looking at the equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

It is easy to summarise this method:
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• Form the quadratic equation am2 + bm+ c = 0. This is done by simply replacing
d2y

dx2

by m2 and
dy

dx
by m. This quadratic is called the auxiliary equation.

• Use the quadratic formula to solve the auxiliary equation. This gives m =
−b±√D

2a
where D = b2 − 4ac. There are now three possible cases:

– This occurs if D > 0, i.e. if b2 > 4ac. The auxiliary equation will have two
distinct real numbers as roots. Call them α1 and α2. Then the general solution
of the equation is

y = Aeα1x + Beα2x

where A and B are constants. As with first order equations, there will often be
extra information in the question that will enable you to calculate A and B.

– This occurs if D = 0, i.e. if b2 = 4ac. This time the auxiliary equation just has
one root. Call it α. Then the general solution of the differential equation is

y = Aeαx + Bxeαx

where A and B are constants.
– This occurs if D < 0, i.e. if b2 < 4ac. The auxiliary equation has no real roots.

However it does have “complex roots” (see next term, and the theory of complex
numbers produces the following as roots of the differential equation:

y = eαx (A sin βx + B cos βx)

where α = − b

2a
and β =

√
−D

2a
and A and B are some constants.

13.7. Example. Find the general solution of the differential equation

d2y

dx2
+ 5

dy

dx
+ 4y = 0.

Solution The auxiliary equation is m2 + 5m + 4 = 0. 52 > 4.1.4 and so we are in the first
case. The roots of the auxiliary equation are −4 and −1, giving us a solution of

y = Ae−4x + Be−x

where A and B are some constants.

13.8. Example. Find the general solution of the differential equation

d2y

dx2
− 4

dy

dx
+ 4y = 0 .

Solution The auxiliary equation is m2 − 4m + 4 = 0. Since 42 = 4.1.4 the discriminant
vanishes and so we are in case two. The auxiliary equations just the one (repeated) root
m = 2. So the general solution is

y = Ae2x + Bxe2x

where A and B are some constants.
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13.9. Example. If you neglect air resistance, the equation of motion for small oscillations
of a simple pendulum is

d2θ

dt2
+

g

l
θ = 0

where θ is the angular displacement from the vertical, l the length of the pendulum, g the
gravitational constant and t time.

Solution This time we are in case 3. Calculating α and β we find that α = 0 and β =
√

g

l
.

So the solution is

θ = A cos
(√

g

l
t

)
+ B sin

(√
g

l
t

)
where A and B are some constants.

Typically one would be told the values of θ and θ′ when t = 0, and this would make it
possible to find A and B. For example, it might be the case that when t = 0 the pendulum
was at rest and θ = θ0. You would then find that A = θ0 and B = 0.

If we didn’t neglect air resistance, we’d get a situation in which the equation of motion

would have a
dθ

dt
term. This would lead to a value for α which was negative and a solution

which was of the form
θ = eαt (A cos γt + B sin γt)

producing a situation known as “damped oscillation” (see diagram).

The sine and cosine part of the solution produces the oscillations and the eαt part the
damping.

13.10. Remark. Another situation, particularly common in situations concerning electrical
oscillations, is one where the simple, damped or undamped oscillation is disturbed by some
external stimulus. This leads us on to non-homogeneous equations, and I shall say a little
about those next time.

13.5.1 The Inhomogeneous Case

This time the equation is

a
d2y

dx2
+ b

dy

dx
+ cy = q(x)

where a, b, c are constants and q(x) is some function of x.



152 CHAPTER 13. DIFFERENTIAL EQUATIONS

13.11. Example. An electrical network consists of an inductance L, a] resistance R and a
condenser of capacity C connected in series with an applied voltage E(t) = a sinωt. The
physics tells us that the charge q on a plate of the condenser satisfies the equation

L
d2q

dt2
+ R

dq

dt
+

1
C

q = a sin ωt

There are two stages to the solution process.

• Solve the homogeneous equation got by replacing q(x) by 0. Do this using the method
described last time. The result is something called the Complementary Function.

• This consists of finding one particular solution to the given equation. This, when you
find it, is called the Particular Integral. The general solution to the equation then
consists of the sum of the Complementary Function and the Particular Integral.

The new skill to be acquired is the method of finding particular integrals. I don’t have
time to give you an exhaustive account, which will cover all the possibilities. However, I
can try to show you the general approach.

The trick is to begin with something called a trial function. To do this you begin
with something that has the same general form as q(x). By this I mean the following sort
of thing:

• If q(x) is a quadratic in x, try a general quadratic in x, i.e. try y = αx2 + βx + γ.

• If q(x) is of the form d sin ωx + e cos ωx for some d, e, try y = C sin ωx + D cos ωx.

• If q(x) = deαx, try y = Ceαx.

The main complication comes when the thing you want to try as a trial function is
already part of the complementary function. Then the general rule is to take what you
would have tried but for this and multiply it by x.

If the situation facing you is not covered by this, go and find a book!

13.12. Example. Find the general solution of the differential equation

2
d2y

dx2
− 9

dy

dx
− 35y = sin 2x .

Solution First find the complementary function by solving

2
d2y

dx2
− 9

dy

dx
− 35y = 0 .

The auxiliary equation is 2m2 − 9m− 35 = 0. This has roots

m = 9±
√

81 + 280
4

= 9±
√

361
4

=
9± 19

4
= 7 or − 2.5

So the complementary function is y = Ae7x + Be−2.5x.
The function on the right is not part of this complementary function, and so for the

trial function we can just take something of the form C sin 2x + D cos 2x. To complete the
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process we have to calculate the particular values of C and D that will work. This is a
matter of putting our trial function into the equation and doing the sums.

y = C sin 2x + D cos 2x

Therefore

dy

dx
= 2C cos 2x− 2D sin 2x

and

d2y

dx2
= −4C sin 2x− 4D cos 2x

Therefore

2
d2y

dx2
− 9

dy

dx
− 35y = −8C sin 2x− 8D cos 2x− 18C cos 2x + 18D sin 2x− 35C sin 2x− 35D cos 2x

Therefore

sin 2x = (−8C + 18D − 35C) sin 2x + (−8D − 18C − 35D) cos 2x

Equating coefficients tells us that

−43C + 18D = 1 −18C − 43D = 0

So

C =
−43
2173

and D =
18

2173

Therefore the general solution of the given equation is

y = Ae7x + Be−2.5x +
1
39

sin 2x +
1
26

cos 2x .

13.13. Example. Find the general solution of the differential equation

d2y

dx2
− 5

dy

dx
+ 4y = 4e4x .

Solution The auxiliary equation is m2 − 5m + 4 = 0. This has roots 1 and 4, and so the
complementary equation is y = Ae4x + Bex.

The righthand side of the given equation, being a constant times e4x is part of the
complementary function. So for a trial function we have to try Cxe4x instead.

y = Cxe4x

dy

dx
= Ce4x + 4Cxe4x

d2y

dx2
= 8Ce4x + 16Cxe4x
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Therefore

d2y

dx2
− 5

dy

dx
+ 4y = 8Ce4x + 16Cxe4x − 5Ce4x − 20Cxe4x + 4Cxe4x

= 3Ce4x

and so

4e4x = 3Ce4x.

Therefore

C =
4
3

and the equation has general solution

y = Ae4x + Bex +
4
3
xe4x

where A and B are arbitrary constants.



Appendix A

Numbers

It is a fact of life that almost all the numerical quantities that you deal with are, for
one reason or another, not exactly correct. I mean that the number that you are working
with does not give the true value of the thing that it measures. There are two obvious
reasons for this. Firstly, the number may come from experimental data which tends to be
approximate by its nature. Secondly, things like calculators and computers are very limited
in the precision to which they can store and use numbers.

It is important that you know how to work with this inaccuracy, rather than just ignoring
it.

A.1 Measures of Error

Suppose the exact value of some quantity is T and that A is an approximation to this value.
There are two standard ways in which to measure the ‘error’ in using A as an approximation
to T :

• Absolute Error E = |A− T |;

• Relative Error E =
∣∣∣∣A− T

T

∣∣∣∣.

Percentage error is relative error times 100.

For numbers close to 1 both measures are roughly the same. For T very large or very
close to zero they are very different. Which one gives the appropriate measure of error
depends very much on context. There are many situations in which your main concern is
the percentage error. If you order 1 ton of sand and only receive 0.99 of a ton then you
might not complain too loudly. On the other hand, if the two bits of the channel tunnel
had been out by one percent in direction the result would have been extremely expensive.
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Decimal Places

Let x = 23.46285, y = 0.002145 and z = 12468.23 be exact values.

x rounded to 3 decimal places (3D) is 23.463
x truncated to 3 decimal places is 23.462
y rounded to 2 decimal places is 0.00
z truncated to 1 decimal place is 12468.2

The rule for truncation is easy — just forget everything after the final decimal place.
The rule for rounding is a bit more complicated. If the next digit is bigger than 5 then add
one to the last digit. If the next digit is less than 5 don’t do anything. If the next digit is 5
and there are further digits other than zero then add 1. If the next digit is 5 and there are
no further non-zero digits then toss a coin. That takes longer to say than to understand!
Note that the ‘adding 1’ may have lots of consequences: 2.3999 rounded to 3D is 2.400.

Note that the statement ‘a = 1.23 rounded to 2D’ means that

1.225 ≤ a ≤ 1.235

In other words a rounded, or truncated, value really represents not a single number but a
range of numbers. This is the important fact to bear in mind.

A.2 Scientific Notation

This is best explained at first by examples. There are a number of different conventions in
use, mainly concerning the position of the decimal point.

If we are writing numbers in scientific notation with 4 significant digits then

12.12342 becomes 0.1212 × 102

−6.2321 becomes −0.6232 × 101

0.002132 becomes 0.2132 × 10−2

234221.23 becomes 0.2342 × 106

0 becomes 0.0000 × 100

Again, you have the options of rounding or truncating. In general, a number is written
in scientific notation with k significant digits if it is put into the form

x = ±0.d1d2d3 . . . dk × 10a

where d1 6= 0 unless x = 0 (zero is always a problem since it alone cannot be scaled in the
desired way).

234.12321 rounded to 4 significant figures is 0.2341 × 103

−23.67 rounded to 2 significant figures is −0.24× 102

123231.123 rounded to 2 significant figures is 0.12× 106

0.0000123 rounded to 1 significant figure is 0.1 × 10−4
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Accuracy of Calculations

Let me do a few examples to warn you of the difficulties.
Suppose that x rounded to 2D is 1.23 and that y rounded to 4D is 21.4628. Then the

statement

x + y = 1.23 + 21.4628 = 22.6928

is dangerous nonsense. The result implies that we know more about the value of x than we
actually do. Let me do the calculation properly. Because of the rounding all we know is
that

1.225 ≤ x ≤ 1.235 and 21.46275 ≤ y ≤ 21.46285.

So all that we can say is that

1.225 + 21.46275 ≤ x + y ≤ 1.235 + 21.46285;

in other words:

22.68775 ≤ x + y ≤ 22.69785

and, if you want a simple answer, the best you can say is that x + y = 22.7 to 1 decimal
place.

Suppose that x rounded to 2D is 34.21 and that y rounded to 3D is 0.005. Then the
statement

x

y
=

34.21
0.005

= 6842.

is, once more, dangerous nonsense. Let’s do this calculation carefully as well:

34.205 ≤ x ≤ 34.215 and 0.0045 ≤ y ≤ 0.0055.

So

34.205
0.0055

≤ x

y
≤ 34.215

0.0045
.

In other words:

6219.091 ≤ x

y
≤ 7603.333. (*)

You can say

x

y
= 0.1× 105 to 1 significant digit ,

but this gives much less information than (*).
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Appendix B

Solutions to Exercises

Solutions for Questions 1 (page 89).

Solution 10.1:

a) Adding, we get 1 + 3j − 3(2− j) = −5 + 6j. We have

1
z

=
1

1 + 3j
=

1− 3j
(1 + 3j)(1 − 3j)

=
1− 3j

10
.

Thus 1/z has real part 0.1 and imaginary part −0.3.
Finally ∣∣∣∣w + w̄

w − w̄

∣∣∣∣ =
∣∣∣∣2− j + 2 + j

2− j − 2 + j

∣∣∣∣ =
∣∣∣∣ 4
−2j

∣∣∣∣ = 2.

This has real part 2 and imaginary part 0.
Again

b) Recall the “30, 60, 90” triangle, with sides 1,
√

3, and 2. Then

z = 1−
√

3j = 2exp
(
−j

π

3

)
and so

z4 = 16 exp
(
−4jπ

3

)
= 16 exp

(
2jπ
3

)
,

where the second form is in terms of the modulus (16) and principal argument (2π/3) of
z4.

c) We have w = −27j = 33 exp
(−1

2

)
πj = 33 exp

(
2k − 1

2

)
πj for any integer k. Thus

by de Moivres theorem, we have

w = 3exp
(

2k
3
− 1

6

)
πj,
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with distinct solutions occurring when k = 0, 1 and 2. Thus the three solutions are

w = 3exp
(
−1

6

)
πj, 3 exp

(
2
3
− 1

6

)
πj, and 3 exp

(
4
3
− 1

6

)
πj.

These can be written, in simplified form as

w = 3exp
(
−πj

6

)
, 3j, and 3 exp

(
−5πj

6

)
.

The three roots are shown in Fig. B.1.

Figure B.1: The three solutions of w3 = −27j.

Solution 10.2:

a) We use the usual rules for addition and multiplication:

z.w = (1− 2j)(3 + j) = 3− 6j + 2 + j = 5− 5j
w

z + 2 + j
=

3 + j

1− 2j + 2 + j
=

3 + j

3− j
=

(3 + j)(3 + j)
3− j)(3 + j)

=
9 + 6j − 1

9 + 1
=

4 + 3j
5

.

|1 + 3j − zz̄| = |1 + 3j − (1− 2j)(1 + 2j)| = |1 + 3j − (1 + 4)|
= | − 4 + 3j| = 5.

b) Working directly, or sketching on the Argand diagram shows that

−2 + 2j =
√

8 exp
(

3πj

4

)
.

To solve the equation w3 = −2 + 2j, write w = r exp(jθ). Then by de Moivre’s theorem,

r3 exp(3jθ) =
√

8 exp
(

3πj

4

)
.
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Thus r3 =
√

8 and 3θ = 3π
4 + 2kπ for some integer k. Since r > 0, we see that r = 81/6 and

θ =
π

4
+

2kπ

3
(k = 0, 1, 2)

gives the three distinct solutions. These are shown in Fig. B.2; the angles involved are π/4,
11π/12 and −5π/12, while the circle has radius r = 21/6.

Figure B.2: Three roots of the equation w3 = −2 + 2j.

Solution 10.3:

a) We substitute the given values.

w

w + z̄
=

(1− 7j)
(1− 7j) + (3− j)

=
(1− 7j)(4 + 8j)
(4− 8j)(4 + 8j)

=
4− 28j + 8j + 56

16 + 64
=

60 − 20j
80

=
3− j

4
.

Using the definition of |z|, |z| = √
9 + 1 =

√
10. Similarly, |w| = √

1 + 49 =
√

50. Finally,

∣∣∣w
z

∣∣∣ = |w|
|z| =

√
50
10

=
√

5.

b) Write w = −2 + 2j. Then |w| = √
4 + 4 and arg w = 3π/4. Since z3 = w, we have

z =
√

2
(

cos
(

3π
12

+
2kπ

3

)
+ j sin

(
3π
12

+
2kπ

3

))

for k = 0, 1, 2. Thus the three roots are
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z1 =
√

2
(
cos

π

4
+ j sin

π

4

)
= 1 + j,

z2 =
√

2
(

cos
11π
12

+ j sin
11π
12

)
,

z3 =
√

2
(

cos
19π
12

+ j sin
19π
12

)
.

The diagram is as shown.

z1

z2

z3

Solution 10.4:

a) Doing the long division of polynomials, we see that

p(z) = (z2 − 2z + 2) · (z3 − 3z2 + 4) = (z2 − 2z + 2) · q(z) (say).

Also q(2) = 0, so p(2) = 0. The remainder theorem now shows that (z − 2) is a factor of
q(z). Again doing the division, we have

p(z) = (z2 − 2z + 2) · (z − 2) · (z2 − z − 2).

Finally we factor each of the quadratics. Using the quadratic formula on the first, the roots
of z2 − 2z + 2 are seen to be 1 + j and 1− j. Thus

z2 − 2z + 2 = (z − 1− j) · (z − 1− j).

The same method works on the second quadratic, or it can be factored directly to give

(z2 − z − 2) = (z − 2) · (z + 1).

Putting this all together shows that

p(z) = (z − 1− j) · (z − 1− j) · (z − 2)2 · (z + 1).

Solution 10.5:

a) Since the given polynomial has real coefficients, we know that if z − (1 + j) is a
factor of p(z) then so is z − (1− j). The product of these is z2 − 2z + 2. We have

p(z) = (z2 − 2z + 2) · (z + 4).

Thus the given linear term was a factor of p(z) and we have

p(z) = z3 + 2z2 − 6z + 8 = (z − 1− j) · (z − 1 + j) · (z + 4),

which expresses p(z) as a product of linear factors.

Solution 10.6: Since the polynomial has real coefficients, if z − 3j is a factor, then so is
z + 3j and hence z2 + 9 will be a quadratic factor. Then

p(z) = z4 − 3z3 + 5z2 − 27z − 36 = (x2 + 9)(z2 − 3z − 4)

= (z2 + 9)(z − 4)(z + 1) = (z − 3j)(z + 3j)(z − 4)(z + 1).

and we have p as a product of four linear factors.
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Solutions for Questions 2 (page 122).

Solution 11.2:

a) Since det(A) = 2 6= 0, the inverse exists. From the formula

A−1 =
1
2

(
2 1
0 1

)
.

Since A has two columns and B has three rows, AB does not exists, while BA =
 0 2

1 1
−1 1


.

We can compute CB = (3, 2), while C−1 does not exists, since it is not square.

b) Let A =
(

a b

c d

)
. Then we have

A ·
(

1 0
0 −1

)
·AT =

(
a b

c d

)
·
(

a c

−b −d

)
=
(

a2 − b2 ac− bd

ac− bd c2 − d2

)
=
(

0 0
0 0

)
.

Thus we have the simultaneous equations

a2 = b2 ac = bd c2 = d2.

Thus b = ±a and d = ±c. If a = b, the remaining equation shows we must have c = d,
while if b = −a we must have d = −c. So the only possible form for A is

A =
(

a a

c c

)
or A =

(
a −a

c −c

)
,

where a and c are any numbers.

c) The value of the determinant is unchanged by subtracting the first column from
the remaining one:

det(A) =

∣∣∣∣∣∣∣∣
1 1 1 1
1 1 + a 1 1
1 1 1 + b 1
1 1 1 1 + c

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0
1 a 0 0
1 0 b 0
1 0 0 c

∣∣∣∣∣∣∣∣
.

Thus det(A) = a · b · c.
Solution 11.3:

a) Calculating, A2 =
(

7 2
3 10

)
.

The matrix A does not have the same number of columns as B has rows, so AB does
not exist.

We have BA =


−7 6

6 4
5 −2


.

Only square matrices have inverses; thus B−1 does not exist.

We have BTB =
(

20 −6
−6 6

)
.
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b) We perform row operations on the augmented matrix


1 2 −1 1 0 0

2 3 1 0 1 0
1 1 1 0 0 1


 −→


1 2 −1 1 0 0

0 −1 3 −2 1 0
0 −1 2 −1 0 1


 [R′

2 = R2 − 2R1] ,
[R′

3 = R3 −R1] ,

−→

1 0 5 −3 2 0

0 1 −3 2 −1 0
0 0 −1 1 −1 1


 [R′

2 = −R2] ,
[R′

1 = R1 − 2R′
2] ,

[R′
3 = R3 + R′

2] .

−→

1 0 0 2 −3 5

0 1 0 −1 2 −3
0 0 1 −1 1 −1


 [R′

3 = −R3] ,
[R′

1 = R1 − 5R′
3] ,

[R′
2 = R2 − 3R′

3] .

Thus A−1 =


 2 −3 5
−1 2 −3
−1 1 −1


.

Solution 11.4:

a) The product exists provided the first matrix as the same number of columns as the
second has rows. Thus

AB =
(

0
0

)
and BC =


−1 −2 0

2 4 0
1 2 0


 .

Since the sizes are wrong, BA does not exists, while det(AB) does not exist since AB is

not square. Finally, CB = 3, a 1× 1 matrix, so CB−1 =
1
3
.

b) The transpose of a matrix is the matrix obtained by interchanging rows and columns.
In this case,

A · AT =
(

a 0
c d

)
·
(

a c

0 d

)
=
(

a2 ac

ac c2 + d2

)
=
(

4 6
6 25

)
.

Thus a2 = 4, ac = 6 and c2 + d2 = 25. We examine each solution of a2 = 4 in turn. If
a = 2, then c = 3 and 9 + d2 = 25 so d = ±4. If a = −2, c = −3 and again d = ±4. This
gives four possible values for A, namely

(
2 0
3 4

)
,

(
2 0
3 −4

)
,

(−2 0
−3 4

)
and

(−2 0
−3 −4

)
.

Solution 11.5:
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a) We subtract the first column from columns 2 and 4, and then expand along the
first row.

∣∣∣∣∣∣∣∣
1 1 0 1
1 0 1 0
0 1 0 1
1 0 1 1− λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0
1 −1 1 −1
0 1 0 1
1 −1 1 −λ

∣∣∣∣∣∣∣∣
,

= −1
∣∣∣∣0 1
1 −λ

∣∣∣∣− 1
∣∣∣∣ 1 1
−1 −λ

∣∣∣∣− 1
∣∣∣∣ 1 0
−1 1

∣∣∣∣ ,
= −1)(−1)− 1(−λ + 1)− 1.1 = 1− λ.

The determinant thus vanishes if and only if λ = 1.

b) Here is the Maple.

> with(linalg):

> A:=matrix([[1,1,0,3],[2,1,1,7-alpha],[1,2,alpha,10]]);

A :=


 1 1 0 3

2 1 1 7− α

1 2 α 10




> B:=gausselim(A);

B :=


 1 1 0 3

0 −1 1 1− α

0 0 α + 1 8− α




> x:=alpha->backsub(B):x(alpha);subs(alpha=2,x(alpha));[
−−4α + 4 + α2

α + 1
,
−α + 7 + α2

α + 1
, −−8 + α

α + 1

]
[0, 3, 2]

From the last line of the reduction, we see there are no solutions if the coefficient of
x3 in the last equation becomes zero, in which case, the equation becomes the inconsistent
0.x3 = 9. Thus there are no solutions when α = −1.

If α = 2, the last equation becomes 3x3 = 6, so x3 = 2. Back substitution gives x2 = 3
and then x1 = 0 as the Maple shows.

Solution 11.6:

a) Calculating, we have

det(A) = (2− λ)(1− λ)− 6 = λ2 − 3λ− 4 = (λ− 4)(λ + 1).

The matrix A is invertible precisely when det(A) 6= 0. Thus A is invertible unless λ = 4 or
λ = −1.
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b) Here is the Maple.
> A:=matrix(3,4,[1,-2,1,9,2,-3,-1,4,-1,2+t,3,s-14*t]);

A :=


 1 −2 1 9

2 −3 −1 4
−1 2 + t 3 −14 t + s




> B:=pivot(A,1,1);

B :=


 1 −2 1 9

0 1 −3 −14
0 t 4 9− 14 t + s




> C:=addrow(B,2,3,-t);

C :=


 1 −2 1 9

0 1 −3 −14
0 0 3 t + 4 9 + s




From the last line of the reduction, we see there is a unique solution unless the coefficient
of z in the last equation becomes zero, in which case, the equation becomes 0.z = 9 + s.
Thus there are no solutions when t = −4/3 unless s = −9. If s = −9, we have an infinite
family of solutions of the form

y = 3z − 14, x = 9 + 2y − z = 5z − 19,

where z is a free parameter.
If t = −1 and s = −5 the last equation becomes z = 4. Using back substitution, we see

first that y = −2 and then that x = 1.

Solution 11.7:

a) The value of the determinant is unchanged by subtracting the first column from
the remaining one:

det(A) =

∣∣∣∣∣∣∣∣
1 2 3 4
1 3 5 7
1 4 7 10
1 5 9 13

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 1 2 3
1 2 4 6
1 3 6 9
1 4 8 12

∣∣∣∣∣∣∣∣
.

Now subtracting twice the second column from the third gives a column consisting entirely
of zeros, and hence det(A) = 0.

b) We use the first equation to eliminate the x - terms in the second and third equa-
tions, to give

x − y + z = 2,
y − tz = −1,

+ (2 + t)y − 3z = 1.

Now use the second equation to eliminate y from the subsequent equations, giving

x − y + z = 2,
y − tz = −1,

(t2 + 2t− 3)z = 3 + t.
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This is now in reduced echelon form. Consider the third equation, (t2+2t−3)z = (t+3)(t−
1)z = 3 + t. If t = −3, this reduces to the trivial equation 0z = 0 and z is unrestricted. In
that case, we get y = −3z − 1 and then x = 1− 4z.

It remains to consider what happens when t 6= −3, in which case the third equation
becomes (t− 1)z = 1. If t = 1, we must have 0z = 1, and there are no solutions. However
if t 6= 1, we have z = 1/(t − 1) and then back substituting first for y and then for x as
described above gives a unique solution.

Solution 11.8: The matrix inversion has the following Maple trace:

> with(linalg):

> A:=matrix([[1,6,2],[-1,3,2],[-2,-1,1]]);

A :=


 1 6 2
−1 3 2
−2 −1 1




> A1:=concat(A,diag(1,1,1));

A1 :=


 1 6 2 1 0 0
−1 3 2 0 1 0
−2 −1 1 0 0 1




> A2:=pivot(A1,1,1);

A2 :=


 1 6 2 1 0 0

0 9 4 1 1 0
0 11 5 2 0 1




> A3:=pivot(A2,2,2):A3:=mulrow(A3,2,1/9);

A3 :=




1 0
−2
3

1
3

−2
3

0

0 1
4
9

1
9

1
9

0

0 0
1
9

7
9

−11
9

1




> A4:=pivot(A3,3,3):A4:=mulrow(A4,3,9);

A4 :=


 1 0 0 5 −8 6

0 1 0 −3 5 −4
0 0 1 7 −11 9
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Solution 11.9: We have

(x− y)(x2 + xy + y2) = x3 − yx2 + x2y − xy2 + xy2 − y3 = x3 − y3.

We first subtract the last column from the remaining two:∣∣∣∣∣∣
1 1 1
x y z

x3 y3 z3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
x y − x z − x

x3 y3 − x3 z3 − x3

∣∣∣∣∣∣ = (y − x)(z − x)

∣∣∣∣∣∣
1 0 0
x 1 1
x3 y2 + xy + x2 z2 + zx + x2

∣∣∣∣∣∣ .
Now subtract the second column form the third,

= (y − x)(z − x)

∣∣∣∣∣∣
1 0 0
x 1 0
x3 y2 + xy + x2 z2 − y2 + zx− xy

∣∣∣∣∣∣ ,

= (y − x)(z − x)(z − y)

∣∣∣∣∣∣
1 0 0
x 1 0
x3 y2 + xy + x2 z + y + x

∣∣∣∣∣∣ ,
= (y − x)(z − x)(z − y)(x + y + z).

Thus k = 1.

Solution 11.10: Here is the row reduction
> A := matrix(3,3,[1,-1,-1,-2,1,2,2,-1,-1]);

A :=


 1 −1 −1
−2 1 2

2 −1 −1




> B:=concat(A,diag(1,1,1)):B:=pivot(B,1,1);

B :=


 1 −1 −1 1 0 0

0 −1 0 2 1 0
0 1 1 −2 0 1




> C:=mulrow(B,2,-1):C:=pivot(C,2,2);

C :=


 1 0 −1 −1 −1 0

0 1 0 −2 −1 0
0 0 1 0 1 1




> E:=pivot(C,3,3);

E :=


 1 0 0 −1 0 1

0 1 0 −2 −1 0
0 0 1 0 1 1





