ENGINEERING CHEMISTRY

Assignment Part

For

ENGINEERING AND APPLIED SCIENCE
2019

by

Dr.

Alaa Eldin Elsayed Hassanien

Chemistry/ Basic Science Department
Higher Future Institute of Engineering and Technology

1-	A balloon has a volume of 2.32 liters at 24.0°C. The balloon	on is heated
	to 48.0°C. Calculate the new volume of the balloon.	(2.51 L)
2-	You are holding two balloons, an orange balloon and a bl	
	The orange balloon is filled with neon (Ne) gas and the b	lue balloon
	is filled with argon (Ar) gas. The orange balloon has twice	the volume
	of the blue balloon. Which of the following best represen	its the mass
	ratio of Ne:Ar in the balloons?	(1:1)
	ratio of Ne. At in the balloons:	(1.1)

3-	A gas sample is heated from -20.0°C to 57.0°C and the	volume is
	increased from 2.00 L to 4.50 L. If the initial pressure is	0.140 atm
	what is the final pressure?	0.0811 atm)
		ĺ
4	Manager contains He stores What is the volume	
4-	Mercury vapor contains Hg atoms. What is the volume	of 201 g of
4-	Mercury vapor contains Hg atoms. What is the volume mercury vapor at 822 K and 0.512 atm?	
		of 201 g of (132 L)
	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
 	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
 	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
 	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
 	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
 	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
 	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)
	mercury vapor at 822 K and 0.512 atm?	of 201 g of (132 L)

5-	An	auto	шооп	5 tile 18 i	mea wiu	ı air a	t a p	ressure of 27.	U lb/ın²	at 2	.5°C.
	A	cold	front	moves	through	and	the	temperature	drops	to	5°C.
	Ass	sumii	ng no (change i	n volume	e, wh	at is	the new tire	oressure	e?	
				C				•			o/in²)
6-								s found to be			
	the	mola		s of gas					,	Ū	mol)
	 	·									

7- Given reaction	$2NH_3(g) +$	- 3Cl ₂ (g)	$\rightarrow N_2$	g(g) + 6H	lCl(g),	you re	act 5.0
L of NH ₃ with 5	$5.0 \mathrm{L}\mathrm{of}\mathrm{Cl}_2$	measur	ed at th	e same c	onditio	ons in a	closed
container. Cal	lculate the	e ratio	of p	ressures	in t	he coi	ntainer
$(P_{final}/P_{initial}).$						(1.33)
8- A 3.54 gram sa	ample of a	certain	diatom	ic gas o	ccupies	s a volu	ime of
3.30-L at 1.00 a	atm and a te	emperatu	re of 4	5°C. Ide	ntify th	is gas.	(N_2)

9-	You carry	out the reaction represented by the following b	alanced
	equation	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	

You add an equal number of moles of nitrogen and hydrogen g	ases in a
balloon. The volume of the balloon is 1.00 L before any reactio	n occurs.
Determine the volume of the balloon after the reaction is complete	. Assume
constant temperature.	(0.67 L)
10-What volume does 40.5 g of N2 occupy at STP?	(32.4 L)

11- A 3.31-g sample of lead nitrate, $Pb(NO_3)_2$, molar mass = 331 g/mol, is heated in an evacuated cylinder with a volume of 2.37 L. The salt decomposes when heated, according to the equation:

$$2\text{Pb}(\text{NO}_3)_2(s) \rightarrow 2\text{PbO}(s) + 4\text{NO}_2(g) + O_2(g)$$

Assuming complete decomposition, what is the pressure in t	the cylinder
after decomposition and cooling to a temperature of 300. K?	Assume the
PbO _(s) takes up negligible volume.	(0.260 atm)
12-A 1.00-g sample of a gaseous compound of boron an	d hydrogen
occupies 0.820 L at 1.00 atm and 3°C. What could be th	
formula for the compound?	(B_2H_6)
formula for the compound:	(D ₂ 11 ₆)

13- A gaseous mixture containing 1.5 mol Ar and 3.5 mol CC	O_2 has a total
pressure of 7.3 atm. What is the partial pressure of CO ₂ ?	(5.1 atm)
14- Calculate the density of F_2 gas at $26^{\circ}C$ and 755 torr.	(1.54 g/L)

15-A sample of gas occupies 20.0 liters at 32 °C when the	pressure is
0.750 atm. What temperature in ⁰ C is required to increase	the volume
to 25.0 liters at a pressure of 0.680 atm?	$(72.7 {}^{0}\text{C})$
16- A sample of a gas occupies a volume of 2.62 liters at 25 °C	
atm. What will be the volume at 50.0 °C and 2.00 atm?	(1.42 L)

17-Consider the reaction between Mg(s) and HCl(aq) to produc	e aqueous
magnesium chloride and hydrogen gas. How many liters of hyd	drogen gas
at STP will be produced when 12.15 g of magnesium reac	ts with an
excess of hydrochloric acid?	(11.2 L)

18 What is the kinetic energy of a 1.56-kg object moving at 94	.0 km/hr?
	$(5.32\times10^2\text{ kJ})$
19- One mole of an ideal gas is expanded from a volume of volume of 8.93 liters against a constant external pressure of 1	
much work (in joules) is performed on the surroundings? Ignor	ore significant
figures for this problem. (T = 300 K; 1 L·atm = 101.3 J)	(803 J)

20- How much heat is required to raise the temperature	of a 5.75-g sample
of iron (specific heat = $0.450 \text{ J/g}^{\circ}\text{C}$) from 25.0°C to $79.80 \text{ J/g}^{\circ}$	3°C? (142 J)
21- A 32.5 g piece of aluminum (which has a molar he	at capacity of 24.03
J/°C·mol) is heated to 82.4°C and dropped into a calorimet	er containing water
(specific heat capacity of water is 4.18 J/g°C) initially a	t 22.3°C. The final
temperature of the water is 24.2°C. Ignoring significant fi	gures, calculate the
mass of water in the calorimeter.	(212 g)

22-	30.0 mL of pure water at 282 K is mixed with 50.0 m	L of pure water
at 306	K. What is the final temperature of the mixture?	(297 K)
	•	
23-	Calculate ΔH° for the reaction $C_4H_4(g)+2H_2(g) \rightarrow$	C ₄ H ₈ (g), using
the fol	lowing data:	
	$\Delta H^{\circ}_{combustion}$ for C ₄ H ₄ (g) = -2341 kJ/mol	
	$\Delta H^{\circ}_{\text{combustion}}$ for $H_2(g) = -286 \text{ kJ/mol}$	
	ΔH° combustion for C ₄ H ₈ (g) = -2755 kJ/mol	
	Zir comouston for C4116(g) Z735 Rovintor	
		(-158 kJ)

24- the following reaction:

$$2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s);$$

 $\Delta H = -1390.81 \text{ kJ}$

- a) Is the reaction exothermic or endothermic?
- b) How much heat is produced/required when 10.0 g AlCl3 forms. (52.2 KJ)
- c) How many grams of Al are required to absorb/evolve 1.00 kJ of energy?

(0.0388 g Al)

25- How much heat is liberated at constant pressure when 2.35 g of potassium metal reacts with 5.68 mL of liquid iodine monochloride (d = 3.24 g/mL)?

$$2K(s) + ICl(l) \rightarrow KCl(s) + KI(s) \qquad \Delta H^{\circ} = -740.71 \text{ kJ/mol}$$

$$(2.23 \times 10^{1} \text{ kJ})$$

26- If the change in entropy of the surroundings for a process at 431	K
and constant pressure is -326 J/K, what is the heat flow absorbed by for the	ıe
system? (141 K	J)
27- The heat of vaporization for 1.0 mole of water at 100.°C and 1.0 at	m
is 40.56 kJ/mol. Calculate ΔS for the process H2O(1) \rightarrow H2O(g) at 100.°C.	
(109 J/K.mo	
(10) 3/18.1110	1)

28- T	The enthalpy of vaporization of ammonia is 23	.35 kJ/mol at its	s boiling
point (–3	33.4°C). Calculate the value of Δ Ssurr when	1.00 mole of a	mmonia
is vapori	zed at -33.4°C and 1.00 atm.	$(-9.74 \times 10^1 \text{ J})$	/K mol)
-			
	For the process CHCl ₃ (s) \rightarrow CHCl ₃ (l), Δ H° =		
43.9 J/m	ol/K. What is the melting point of chloroform	1? ((–64 °C)

30-	For the process of a certain liquid vaporizing at 1 atm, ΔH°	vap = 54.2
kJ/mo	ol and ΔS° vap= 74.1 J/mol K. Assuming these values are inde	pendent of
T, wh	nat is the normal boiling point of this liquid?	(458 °C)
31-	Given that Δ Hvap is 53.3 kJ/mol, and the boiling point is f one mole of this substance is vaporized at 1 atm, calculate Δ	83.4°C, 1

32- For the reaction $Cl_2O(g) + \frac{3}{2}O_2(g) \rightarrow 2ClO_2(g)$ $\Delta H^{\circ} = 126.4 \text{ kJ/mol}$ and $\Delta S^{\circ} = -74.9 \text{ J/K mol}$. At 361°C, what is ΔG ? (173.9 kJ/mol) Given the following data (ΔH_f , S° , respectively) for $N_2O_4(1)$ -20. 33kJ/mol, 209.0 J/K mol, and N₂O₄(g) 10. kJ/mol, 304.2 J/K mol. What is temperature (in °C) is the vaporization of N₂O₄ liquid spontaneous? (Above 42 °C.)

34- Consider the reaction:	$2SO_2(g) \Longrightarrow 2SO_3(g)$
for which $\Delta H^{\circ} = -200$. kJ and $\Delta S^{\circ} =$	=-187.1 J/K at 25°C. Assuming that ΔH°
and ΔS° are independent of tempera	ture, calculate the temperature where Kp
= 1.	(1069 K
35- The standard free energy of for	rmation of nitric oxide, NO, at 1000. K omobile engine during ignition) is 77.9
35- The standard free energy of for (roughly the temperature in an auto-	rmation of nitric oxide, NO, at 1000. K omobile engine during ignition) is 77.9 onstant for the reaction at 1000 K
35- The standard free energy of for (roughly the temperature in an auto-kJ/mol. Calculate the equilibrium co- $N_2(g) + O_2(g) \Longrightarrow 2N_0$	rmation of nitric oxide, NO, at 1000. K omobile engine during ignition) is 77.9 onstant for the reaction at 1000 K
35- The standard free energy of for (roughly the temperature in an autohylmol. Calculate the equilibrium con $N_2(g) + O_2(g) \implies 2N_0$	rmation of nitric oxide, NO, at 1000. Keep the mobile engine during ignition is 77.9 substant for the reaction at 1000 K $O(g)$ (7.27×10^{-9})
35- The standard free energy of for (roughly the temperature in an auto kJ/mol. Calculate the equilibrium con N ₂ (g) + O ₂ (g) = 2NO	rmation of nitric oxide, NO, at 1000. Keep the mobile engine during ignition) is 77.9 constant for the reaction at 1000 K (7.27×10^{-9})
35- The standard free energy of for (roughly the temperature in an auto-kJ/mol. Calculate the equilibrium co- $N_2(g) + O_2(g) \Longrightarrow 2N0$	rmation of nitric oxide, NO, at 1000. Keep the mobile engine during ignition is 77.9 substant for the reaction at 1000 K (7.27×10^{-9})
35- The standard free energy of for (roughly the temperature in an auto kJ/mol. Calculate the equilibrium con N ₂ (g) + O ₂ (g) = 2NO	rmation of nitric oxide, NO, at 1000. Keep the mobile engine during ignition) is 77.9 constant for the reaction at 1000 K (7.27×10^{-9})
35- The standard free energy of for (roughly the temperature in an auto kJ/mol. Calculate the equilibrium con N ₂ (g) + O ₂ (g) = 2NO	rmation of nitric oxide, NO, at 1000. Keep the mobile engine during ignition) is 77.9 constant for the reaction at 1000 K (7.27×10^{-9})
35- The standard free energy of for (roughly the temperature in an auto kJ/mol. Calculate the equilibrium con N ₂ (g) + O ₂ (g) = 2NO	rmation of nitric oxide, NO, at 1000. Keep the mobile engine during ignition) is 77.9 constant for the reaction at 1000 K (7.27×10^{-9})
35- The standard free energy of for (roughly the temperature in an auto-kJ/mol. Calculate the equilibrium converged $N_2(g) + O_2(g) \implies 2N_0$	rmation of nitric oxide, NO, at 1000. Keep the model of the reaction at 1000 K and $O(g)$ (7.27 × 10 ⁻⁹)
35- The standard free energy of for (roughly the temperature in an auto-kJ/mol. Calculate the equilibrium converged $N_2(g) + O_2(g) \Longrightarrow 2N_0$	rmation of nitric oxide, NO, at 1000. Keep the model of the reaction at 1000 K and the reaction at 10
35- The standard free energy of for (roughly the temperature in an auto-kJ/mol. Calculate the equilibrium converged $N_2(g) + O_2(g) \Longrightarrow 2N_0$	rmation of nitric oxide, NO, at 1000. Keep the model of the reaction at 1000 K and the reaction at 100

35-Water gas, a commercial fuel, is made by the reaction of hot coke carbon with steam.

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

When equilibrium is established at 844°C the concentrations of CO, H_2 , and H_2O are 4.00×10^{-2} , 4.00×10^{-2} , and 1.00×10^{-2} mole/liter, respectively. Calculate the value of ΔG° for this reaction at 844°C.

(17.02 kJ)

Calculate the Gross and Net calorific values of a coal having the

36-

following compositions, $C=80$ %, H_2 =08 %, $O_2=08$ %, $S=2$ % and ash=2.
Latent heat of steam is = 587 cal/gm.
(8923.8 Kcal/kg, 8501.16 Kcal/kg)

37- Ca	alculate the Gross and Net	calorific values of a coal having the
following	compositions, C = 63 %, H ₂	= 19 %, O_2 = 3%, S = 13 % and ash=2.
Latent hea	at of steam is $= 587 \text{ cal/gm}$.	
		(11807.22 Kcal/kg, 10803.45 Kcal/kg)

38- On analysis, a coal sample has the following composition by	weight
$C = 75 \%$, $O_2 = 04 \%$, $S = 05 \%$, and $ash = 3\%$. Net calorific value of	the fuel
is 9797.71kcal / kg. Calculate the percentage of hydrogen and gross of	alorific
value of coal.	(13%)

39-	calculate the volume of air needed for the combustion of 1kg of carbon			
	(8888.9 L)			

40-	How do yo	ou calculate t	he volume of ox	kygen re	quired for	the c	complete
comb	ustion of 0.2	25 dm ³ of me	thane at STP?			((0.5 dm^3
	~						
41-	Calculate	the weight	and volume	of air	required	for c	complete
comb	ustion of 5kg	g coal with fo	ollowing compo	sition, (C = 85%, 1	H = 1	0 %, O=
5%.					(65.4 kg,	5062	20.6 mL)

Assignment Part

Dr. Alaa E. Hassanien

Engineering Chemistry

48-	Find the mass percent of CaCl ₂ in a solution	whose molarity is 2.20
M an	d whose density is 1.18 g/mL?	(20.7 %)

49-The term "proof" is defined as twice the percent by volume of pure ethanol in solution. Thus, a solution that is 95% (by volume) ethanol is 190 proof. What is the molarity of ethanol in a 92 proof ethanol/water solution?

density of ethanol = 0.8 g/cm^3	
density of water = 1.0 g/cm3	
mol. wt. of ethanol = 46 g/mol	
	(8.0 M)

50- When 0.811 g of NH_4NO_3 was added to 150.0	g of water in a
Styrofoam cup, the temperature dropped by 0.413°C. The	e heat capacity of
H ₂ O is 4.18 J/g°C. Assume the specific heat of the solution	equals that of pure
H_2O and that the calorimeter neither absorbs nor leaks heat.	_
heat of solution of solid NH ₄ NO ₃ ?:	(+ 25.7 kJ/mol)
ileat of solution of solid NH4NO3?.	(+ 23.7 KJ/IIIOI)

51- The vapor pressure of water at 25.0°C is 23.8 torr. Determine	the mass
of glucose (molar mass = 180 g/mol) needed to add to 500.0 g of	water to
change the vapor pressure to 22.8 torr.	(219 g)
	`

52- An ideal solution is formed from a mixture of the r	nonvolatile solute
urea, CO(NH ₂) ₂ , and methanol, CH ₃ OH. The vapor pressure	of pure methanol
at 20°C is 89 mmHg. If 4.4 g of urea is mixed with 39.	9 g of methanol,
calculate the vapor pressure of the methanol solution.	(84 mmHg)

53- At 40°C, heptane has a vapor pressure of about 92.2 torr and octano
has a vapor pressure of about 31.2 torr. Assuming ideal behavior, what is the
vapor pressure of a solution that contains twice as many moles of heptane as
octane? (71.9 torr)

54- Consider a solution containing liquids A and B where the mole
fraction of B is 0.60. Assuming ideality, calculate the mole fraction of B in
the vapor at equilibrium with this solution at 25°C. (The vapor pressures of
pure liquid A and B at 25°C are 129.4 torr and 400.0 torr, respectively.)
(0.82)

55-	The freezing point (T _f) for t-butanol is 25.50°C and K	L_f is 9.1°C/m.
Usual	ly t-butanol absorbs water on exposure to the air. If the f	reezing point
of a 1	2.9-g sample of t-butanol is measured as 24.59°C, how m	any grams of
water	are present in the sample?	(0.023 g)

56-	Determine the osmotic pressure of a solution that con	ntains 0.048 g of
a hyd	rocarbon solute (molar mass = 340 g/mol) dissolved in	benzene to make
a 350	-mL solution. The temperature is 20.0°C.	(7.4 torr)
57-	Calculate the molarity of a solution containing KCl	and water whose
	tic pressure at 21.6°C is 125 torr. Assume complete di	
salt.		(0.00340 M)

You have a 10.40-g mixture of table sugar ($C_{12}H_{22}O_{11}$) and table sal
(NaCl). When this mixture is dissolved in 150. g of water, the freezing poin
is found to be -2.24°C. Calculate the percent by mass of sugar in the origina
mixture. (53.9 %

-
<u> </u>
60- Determine the equilibrium constant for the system $N_2O_4 \rightleftharpoons 2NO_2$ at 25°C
concentrations are shown here: $[N_2O_4] = 2.32 \times 10^{-2} \text{ M}$, $[NO_2] = 1.41 \times 10^{-2} \text{ M}$.
concentrations are shown here: $[N_2O_4] = 2.32 \times 10^{-2} \text{ M}, [NO_2] = 1.41 \times 10^{-2} \text{ M}.$ (8.57 × 10 ⁻³)
(8.57 × 10 ⁻³)
(8.57×10^{-3})
(8.57×10^{-3})
(8.57 × 10 ⁻³)
(8.57 × 10 ⁻³)

61-	A gas sample is heated from -20.0°C	C to 57.0°C and the volume is
increas	ed from 2.00 L to 4.50 L. If the initial	l pressure is 0.140 atm, what is
the fina	al pressure?	(0.0811 atm)

62- Consider the following reaction: $CS_2(g) + 4H_2(g) \rightarrow CH_4(g)$	$)+2H_{2}S(g).$
The equilibrium constant K is about 0.31 at 900.°C. What is	s Kp at this
temperature? (3	3.3×10^{-5})
63- Consider the following equilibrated system: 2NO ₂ (g)→2NO	$O(g) + O_2(g)$.
If the Kp value is 0.604, find the equilibrium pressure of the O ₂ ga	as if the NO ₂
gas pressure is 0.520 atm and the PNO is 0.300 atm at equilibriu	m.
	(1.81 atm)

64- At a certain temperature K for the reaction $2NO_2 \rightarrow N_2O_4$ is 7.5
liters/mole. If 2.0 moles of NO2 are placed in a 2.0-liter container and
permitted to react at this temperature, calculate the concentration of N_2O_4 at
equilibrium. (0.39 moles/liter)

67- Solid calcium hydroxide is dissolved in water until the pl	H of the solution
is 11.44. The hydroxide ion concentration [OH ⁻] of the solution.	
	$(2.8 \times 10^{-3} \text{ M})$
68- At 65°C, the ion-product constant of water, Kw, is 1.20 x	10 ⁻¹³ . Calculate
the pH of pure water at 65°C.	(132 L)

72-	How many moles of benzoic acid, a monoprotic acid with $Ka = 6.4 x$
10^{-5}	must be dissolved in 250. mL of H_2O to produce a solution with $pH =$
2.04	? (0.32 mole)
73-	When 2.5×10^{-2} mol of nicotinic acid (a monoprotic acid) is dissolved in
350 ı	mL of water, the pH is 3.05. Calculate the Ka of nicotinic acid.
	(1.1×10^{-5})

	Approximately how much water should be added to 10.0 mL of 11.1 M
HCl	so that it has the same pH as 0.90 M acetic acid ($Ka = 1.8 \times 10^{-5}$)?
	(28 L
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o
	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o
75 this a	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o
75- this a	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75- this a	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)
75	A solution of 2.9 M weak acid is 0.52% ionized. What is the Ka value o acid? (7.9 x 10–5)

78-	Given that the Ka for HOCl is 3.45×10^{-8} , calculate the K value for the
reac	etion of HOCl with OH ⁻ . (3.45 x 106)
	15.0 mL of 0.50 M NaOH is added to a 100mL sample of 0.457 M NH ₃
(K_b)	for $NH_3 = 1.8 \times 10-5$). What is the equilibrium concentration of NH^{4+}
ions	$(1.1 \times 10^{-4} \text{ M})$

82- A 75.0-mL sample of 0.0650 M HCN (Ka = 6.2×10^{-10})) is titrated
with 0.65 M NaOH. What volume of 0.65 M NaOH is required to	o reach the
stoichiometric point?	(7.5 mL)
83- A 25.00-mL sample of propanoic acid, CH ₃ CH ₂ COOH, of	f unknowr
concentration was titrated with 0.111 M KOH. The equivalence	
reached when 44.54 mL of base had been added. What is the conce	-
	(0.0711 M)
	,

Dr. Alaa E. Hassanien

Engineering Chemistry

88- Chromate ion is added to a saturated solution of Ag_{2}	CrO ₄ to reach 0.78
M CrO ₄ -2. Calculate the final concentration of silver ion a	t equilibrium (Ksp
for Ag_2CrO_4 is 9.0×10^{-12}).	(3.4×10^{-6})
89- How many moles of CaF2 will dissolve in 3.0 liters	s of 0.089 M NaF
solution? (Ksp for $CaF_2 = 4.0 \times 10^{-11}$)	(1.5×10^{-8})

الكيمياء الهندسية

(جزء التمارين)

للهندسة والعلوم التطبيقية 2019

دكتور علاء الدين السيد حسانين

كيمياء _ قسم العلوم الأساسية معهد المستقبل العالى للهندسة والتكنولوجيا